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Abstract.  Small-area estimates of age-specific fertility often rely upon incompletely geocoded microdata 
that is likely subject to largely unignorable missingness.  In spite of this challenge, little if any discussion 
of methods for remediating geocoded data inputs prior to making ASFR estimates has been presented in 
the literature.  This paper presents a unified, spatially-explicit approach to correcting small area ASFR 
estimates. The proposed method is based on estimation of counts of unobserved birth events in light of 
zip-code level estimates of geocoding success rates and imputation of mother's age onto these missing 
data based on American Community Survey results.  Unremediated and remediated ASFR estimates are 
used to make April 1, 2010 estimates of the 0 to 1 population for Census tracts in the Bernalillo County, 
New Mexico. These estimates are then compared to observed 0 to 1 age counts in the 2010 Census.  
Results are discussed in light of the growing need for accurate small-area demographic estimates and 
the challenges associated with producing them. 
 

Introduction 

Small-area demographic estimates are often founded on geocoded microdata based on addresses 
associated with both physical locations (xy coordinates) and demographic events such as births or 
deaths (Drummond, 1995;  Baker et. al., 2012).  This practice permits the location of demographic 
events within the specific areal units for which demographers typically make estimates or projections 
(Voss et. al., 1999; Voss, 2007) and for which demographic characteristics (such as teen pregnancy rates) 
important to public health practitioners are computed.  While geocoding of demographic data 
potentially makes extension of standard demographic methods to smaller geographies possible (Jarosz, 
2008; Popoff and Judson, 2004; Swanson and Pol, 2005;  Baker et. al., 2012), it is not without pitfalls as it 
is well-known that such datasets are subject to systematic incompleteness that inevitably down-biases 
demographic estimates (Zandbergen, 2009;  Oliver et. al., 2005;  Gilboa et. al., 2006; Baker, 2010;  Baker 
et. al., 2012).  Such incompleteness likely introduces non-ignorable missing data in small area 
demographic estimates (Haining, 2003;  Frotheringham et. al., 2002; Le Sage and Pace, 2004; Little and 



 

 

Rubin, 1987; Little and Schenker, 1993; Shaffer, 1999).  Existing studies have repeatedly suggested 
incomplete geocoding is a spatially-heterogeneous and dependent process (Baker et.al., 2012) that 
biases estimates of specific demographic sub-groups (Cavanaugh, 1981) along racial and ethnic and 
rural/urban lines (Zandbergen, 2009;  Oliver et. al., 2005; Gilboa et. al., 2006).  Incomplete geocoding 
leads to down-bias in small-area counts of demographic events that is similar to incomplete surveillance 
(Shyrock and Siegel, 1980; UN, 1983; Brass, 1964;  Brass et.al., 1968;  Baker et. al., 2011) and that is 
spatially patterned (Baker et. al., 2012).  Because these estimates involve the use of count data, these 
down-biases are especially important to demographers and are expected to have a greater impact upon 
rate calculation than upon the estimation of sample characteristics such as mean and variance (Little 

and Rubin, 1987; Little and 
Schenker, 1994).  Treatment of 
missing data in small-area 
demography may even be more 
important than in standard 
statistical models.  

The potentially large impact of 
missing data on small-area 
estimates of age-specific 
fertility (ASFR) is observed in 
Figure 1.  Here a census-tract 
level set of ASFRs based on 
geocoded data (red line) is 

observed to be dramatically lower than a remediated set of estimates utilizing the well-known Brass PF 
ratio method (blue line--see Brass, 1964, 1968; UN, 1983;  Baker et. al., 2011 for a complete description 
of the method).  The Brass PF ratio method up-adjusts estimates of ASFR based on information on 
children-ever-born by age, correcting the magnitude of the ASFR estimates while preserving the shape 
of the ASFR curve (Brass, 1964; Baker et. al., 2011).  The large-scale difference here highlights the impact 
of missing data in demographic estimates--and how under-reporting  of counts of data has a much larger 
impact on estimation of demographic quantities than it may have for estimates of sample-based 
characteristics where the mean and variance of estimates may sometimes be adequately estimated 
even with missing data (Little and Rubin, 1987;  Little and Schenker, 1994) or may be adequately 
remediated using resampling methods such as bootstrapping (Efron, 1979, 1981, 1985) or monte-carlo 
or statistics-based imputation (Lemieux, 2009; Schaffer, 1999).   In demographic estimates based on 
geocoded microdata, incompleteness of data down-biases estimates and few probabilistic methods for 
remediation have been presented in the literature (Baker et. al., 2011, 2012).   

This paper reports research on spatial patterns of missingness in geocoded data, how these patterns 
may impact estimates of ASFR, and how ASFR estimates made using geocoded microdata on births may 
be remediated to improve these estimates.  Estimates of ASFRs are made for 2010 census tracts within 
Bernalillo County, NM for the year 2005 using geocoded microdata on births and intercensal estimates 
from the Geospatial and Population Studies program at the University of New Mexico.  Estimates of 



 

 

missing birth counts were made using previous research on spatially-explicit patterns of missingness at 
the zip-code level reported in Baker et. al., (2012).  American Community Survey (ACS) data were utilized 
to impute ages to these missing events at the Census tract level and a second set of ASFR estimates 
were made using this two-step remediation procedure (missing data estimated and age-characteristics 
imputed-see discussion in materials and methods below).    

Materials and Methods 

 Data and Variables 

Microdata on births for 2005 were made available by the New Mexico Bureau of Vital Records.  Births 
data were georeferenced at the street level in ESRI's ARC-GIS 10.0.  Microdata were referenced against 
multiple electronic road network sources, with the residual of records remaining ungeocoded being 
rematched sequentially against these sources in the following order:  (1) Teleatlas' DynaMaps product 
(Vintage 2008), (2) E911 road networks provided by the New Mexico Division of Finance Administration, 
(3) the Census Bureau's TIGER (vintage 2009) road networks, and (4) local sources provided by 
jurisdictions such as the City of Albuquerque.  Of the 9,291 births recorded in Bernalillo County in 2005, 
7,763 were successfully geocoded at the street level (match rate = 83.55%).  Data on population at risk 
were taken from the intercensal estimates series produced by the Geospatial and Population Studies 
group at the University of New Mexico.  Following the convention of Mazumdar et. al. (2008), we 

envision this geocoding process as a specific probability model (Gi) whose success rate corresponds to a 

census tract-specific Bernoulli random process (Grinstead and Snell, 2006) that is spatially-
heterogeneous and specific to the algorithm described here.  

Estimates of "Missing Data" and Imputation of its Age-Structure 

Estimates of missing data were taken from previous research by the GPS group at UNM, made in 
conjunction with construction of a statewide Master Address File (GPS-MAF) in preparation for the 2010 
Census. This file included the collation and integration of numerous forms of address data including 
E911 files, assessor parcel sources, driver's license files, building permits, and vital records.    Geocoded 
microdata were used to make zip-code level summary counts using a combination of the most recent 
ZCTA files provided by the US Census Bureau (2010) and the Zip-code level file available from ESRI's 
framework dataset for Arc-GIS version 10.0 (2010).  These summary counts of successfully geocoded 
microdata were then compared to the original input data at the zip-code level and used to create 
estimates of the probability of successfully geocoding an address at the zip-code level.  These estimates 
of "success" were modeled as a Bernoulli random process (Grinstead and Snell, 2006;  Samuels and 
Witmer, 1998)  with an associated mean (p) and variance (pq) that was utilized in further modeling 
described below.  Horvitz-Thompson style raising factors (Horvitz and Thompson, 1952;  Popoff and 
Judson, 2004) were estimated at the zip-code level as: 

Ri =[ 1/probability of geocoding success|Gij ] 



 

 

where Gij is the geocoding process.  This algorithm is described in further detail in Baker et. al. (2012), to 
which the reader is referred.  In an extension of the methodology described there, in this research  
uncertainty in estimates of the zip-code specific levels of missingness are made using stochastic 
simulation (Lemieux, 2009;  Kulkarni, 2011; Fishman, 1986; ; Baker et. al., 2011) and appropriate 95% 
certainty bounds were constructed and utilized in modeling missing data.  Estimates of the probability of 
successful geocoding were used to make estimates of missing data counts.  Each observed birth was 
weighted according to its zip-code specific raising factor, census tract identifiers were assigned spatially 
in Arc-GIS 10.0, and the estimates of missing data resulting from these adjustments were aggregated to 
the Census tract level.  Precedents in the literature on population ecology, where observability of 
species siting or occupancy is explicitly modeled, exist (Caswell, 2001;  Linstrom, 2011;  Morris and Doak, 
2005).   

As made, these estimates of missing birth counts in each census tract included no data on the age-
structure of missingness.  Logistic regression did not suggest that age of the mother was a significant 
predictor of the probability of geocoding success (p=.359), suggesting that age of the mother might 
safely be assumed to be "missing" at random sensu Little and Rubin (1987), Little and Schenker (1993), 
Schafer(1999) with respect to age.  As such, imputation of age to the estimated counts of missing data 
were made using data from the American Community Survey--available as a period estimate for 2006-
2010 at the Census tract level.  These imputations were accomplished using monte-carlo simulation 
(Lemieux, 2009;  Gardiner, 1983; Kulkarni, 2011) based on the suggested multinomial distribution of age 
at birth reported in the 2006-2010 ACS data.  Multinomial probabilities are underpinned by individual 
binomial probabilities in each category comprising the distribution (Grinstead and Snell, 2006).  These 
probabilities were modeled using the ACS data to estimate births within age groups including 15-19 
years, 20-34 years, and 35-49 years.  This broad age-structure was imputed to the missing births data, 
then broken out into five-year age groups (15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49) using the 
proportional distribution estimated in the ACS (assuring an identical data source) to arrive at five-year 
interval based estimates. The probability of a given birth being within each age group was estimated 
using simulation (Lemieux, 2009; Fishman, 1986;  Kulkarni, 2011) by randomly resampling the estimates 
of births and age within each broad group and resampling their distribution to the finer-grained 
categories.  All simulations were programmed in the R package (www.cran.org) assuming a normal 
distribution and using the ACS-reported counts as a mean and by converting the reported margin of 
errors in the ACS data to standard deviations through algebraic rearrangement. Since resampling 
algorithms accomplished using random number generations display serial autocorrelation that can bias 
estimates (Lemieux, 2009), here we utilize only each 100th sample (Lemieux, 2009;  Fishman, 1986;  
Kulkarni, 2011).   In the case of 11 census tracts (n=154 in Bernalillo County as of 2010, with 143 used 
here), the margins of error reported in the ACS were too large to permit a stable analysis (they 
suggested negative numbers in over 66% of realizations) and these census tracts were ejected from the 
final evaluation.  In all other cases, a simulation-based estimate of mean and variance of the ages of 
mothers was possible.   

ASFR Estimates 



 

 

Age-specific fertility was estimated at the census tract level (with i representing the five-year age-
interval and j the specific census tract) as: 

ASFRij = Birthsij /Populationij 

Two sets of ASFR estimates were made. The first set relied solely upon the 2005 geocoded birth counts 
by Census tract, divided by the July 1, 2005 GPS intercensal population estimate for each age-group.  
The second ASFR estimate used the same denominator estimate, but utilized a census-tract level birth 
count for each age-category that included the estimate of missing data described above, with age 
imputed based on the information available in the 2006-2010 ACS.   

The estimating equation associated with this process is: 

ASFRij = BGij + (Bmiss,ij*m(agex to x+5, ij)) / n2005, x to x +5, ij 

where BGij represents births geocoded at the census tract level, Bmiss,ij the estimate of births unobserved 
in the census tract and m(agex to x + 5, ij) is the value of the multinomial distribution of age of mothers 
giving birth in the last twelve months based on the ACS data, and n2005,x to x +5, ij represents population. 

The procedure is detailed graphically in Figure 2.   

 

Figure 2.  Spatial-Remediation Algorithm 
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Evaluation 

No gold-standard measure of age-specific fertility exists at the census tract level.  This research took a 
pragmatic approach to evaluation of the proposed method in light of an inability to directly compare 
estimated ASFRs to an observed "truth".  Age-specific fertility rates form the basis of population renewal 
(Lotka, 1911;  Sharpe, 1926;  Shyrock and Siegel, 1980;  Preston et. al., 2003;  Keyfitz and Caswell, 2005).  
When the vector of age-specific fertility rates is an accurate estimate of the birth hazard by age, then 
the inner product of this vector and a vector of census counts of women in corresponding age-intervals 
should produce an accurate estimate of the number of children aged 0 to 1 for the corresponding year.  
Errors in estimates of  the number of children aged 0 to 1 on April 1, 2010 based on multiplying counts 
of women by age against ASFRs should be proportional to the accuracy associated with the ASFR 
estimates.  In this research, we compare observed Census 2010 counts of children aged 0 to 1 year with 
estimates made by multiplying Census 2010 counts of women aged 15-49 against the corresponding 
estimates of ASFR.  These estimates and counts are used to estimate the algebraic errors (both numeric 
and percentage) associated with each set of ASFR estimates (remediated and non-remediated), to 
compute the root mean-squared error (RMSE), and estimate the marginal percentage-point 
improvement (the reduction in error as percentage points) associated with the spatially-explicit 
remediation of ASFR estimates described here.   

Results 

Table 1 provides a summary of the results in terms of algebraic accuracy measures (numeric and 
percentage), of variance associated with the estimates (Root Mean Squared Error),  and the marginal 
improvements in estimation of 0 to 1 year olds in the 2010 Census associated with using spatially-  

 

remediated ASFR estimates.  Utilization of unremediated geocoded birth counts to estimate ASFRs 
resulted in a significantly down-biased estimate of the number of 0 to 1 year olds.  Since the root-mean 
squared error in both cases suggests important outlier cases are present in the data (the RMSE is 
numerically higher than either mean or median estimates of the average error in the set), we here 
emphasize the median error in the discussion.  The Median Algebraic Percentage Error associated with 

Numeric Percentage Numeric Percentage

Mean -15 -25.15 -2 -3.95 13 21.20

Median -14 -28.77 -4 -9.71 10 19.06

RMSE 25 4.07 21 4.06 5 0.01

Table 1.  Results:  0 to 1 Population Estimate Using Geocoded and Remediated ASFR Estimates

Measure
Geocoded Remediated Marginal Improvement 

Numeric
Marginal Improvement 

Percentage Points



 

 

the unremediated ASFR set was nearly 30.0 percent (Median=-28.77 percent).  Numerically, this meant 
an underestimate of 14 infants on average at the census tract level.  Spatially-remediated estimates 
resulted in errors over 3 times smaller, with a median just under 10 percent (Median= -9.71 percent).  
Both sets of estimates continue to produce down-biased estimates of 0 to 1 year olds and the variation 
associated with these errors (RMSE) is nearly identical.  The average marginal improvement associated 
with the use of the spatially-remediated estimates, however,  is nearly 20 percentage points (Median= 
19.06).   A further consideration of the mean errors associated with each set is informative.  While the 
median and mean are similar for the unremediated set (suggesting that fewer significant outliers exist), 
the mean and median are quite different for the spatially-remediated ASFR-based estimates.   On 
average, using the remediated ASFR estimates would result in an error of only -2 persons (-3.95 
percent), suggesting that some influential outlying estimates (perhaps for tracts with less reliable ACS 
data or estimates of the amount of missing data) may be driving the higher average error associated 
with the medians.   

 

Figure 3.  County-Wide Patterning in Marginal Improvements 

 

Figure 3 illustrates a clearly-spatially-dependent patterning of estimate improvements associated with 
the procedure described in this paper.  It also provides hints into the dynamics of demographic 
estimation that are worthy of further consideration.   To the far left of this Figure, census tracts are 
characterized by dramatic improvements in the accuracy of estimates for the population aged 0 to 1.  
These areas are characterized by significant, recent development of housing with construction of new 
roads and conversion of existing street names. While zip-codes have remained constant in this area, the 
ability to geocode microdata to street names and positional intervals based on house number might 
easily be anticipated to be negatively impacted by these challenges (Baker et. al., 2012; Zandbergen, 
2009).  Other small-scale heterogeneities reveal surprises.  Figure 4 illustrates one example--in the  



 

 

 

Figure 4.   Missing Data and Marginal Improvements by Census Tract (UNM Circled) 

vicinity of the University of New Mexico--where large-scale improvements were observed (ranging 
between 35 percent and 113 percent) by utilizing spatially-remediated ASFRs to estimate the 0 to 1 
population.  The presence of these improvements in areas characterized by older and much more stable 
street networks or housing-unit changes is surprising and raises questions about the sorts of 
characteristics that might be associated with marginal percentage-point improvements in these 
estimates. Ideally, a highly-effective set of estimates should not be associated with improvements for 
particular sub-groups, but with aspects of the geocoding process itself.    An exploratory follow-up 
regression analysis was conducted to identify potential correlates of marginal improvement with the 
adjusted method, as well as those variables associated with algebraic percentage errors in both 
remediated and unadjusted (geocoded observations only) estimates.  Tables 2-4 (next page) detail these 
results.  Few predictors were statistically significantly associated with either marginal improvements or 
errors in either set of estimates.  Marginal improvements were associated with the share of the county's 
housing units (beta=7.837, p= 0.0402) and with the magnitude of corrections made in births to women 
aged 20 to 24 (beta=0.06855, p=0.044) and 25 to 29 (beta=0.09059, p=.000).  Only housing unit 
occupancy rates predicted algebraic errors for either the unremediated (beta=3.184, p=0.004) or 
remediated (beta=2.8313, p=0.001) estimates.  Neither marginal improvements nor algebraic errors 
were associated with a youthful age-structure (proportion 0 to 18), the proportion of the population 
that is of Hispanic origin, or any of the other age-specific  ASFR adjustments.   

Discussion 

Spatially-explicit remediation of geocoded births data can improve small-area estimates of age-specific 
fertility dramatically.  Accurate estimates of age-specific fertility should produce accurate estimates of 
the 0 to 1 population for April 1, 2010 when multiplied against the 2010 population of women of child-  



 

 

  



 

 

bearing age.  In the current study, estimates of the  0 to 1 year population are improved by over 19.0 
percentage points.  While this analysis is preliminary, these improvements are not associated with any 
demographic characteristics, but only with the share of housing units in a given census tract.  Errors that 
remain in the adjusted estimates are only linked to occupancy rates and, again, are not predicted by any 
demographic characteristics examined in this research.  These results suggests that errors associated 
with these estimates are linked to geocoding processes, and work well systematically across census 
tracts with differing ethnic structures , rates of housing vacancy, and any number of unexamined 
population and housing characteristics.  Marginal improvements observed here appear to apply equally 
well across these heterogeneities and do not appear to penalize specific sub-groups (Cavanaugh, 1981).  

In spite of the encouraging results reported here, there are a number of limitations to this study.  First, 
comparing predicted births to the 0 to 1 population assumes zero migration has occurred.  In reality, the 
dynamics of the 0 to 1 population will include stable residents, those who have moved (thus subtracting 
births that occurred within the tract), and those that have moved in from other census tracts.   Though 
these facts place limitations on the results of this study, little accurate data is available on residency 
from the American Community Survey--or any other source--at the Census tract level.  Although 
residence one-year ago is collected in the ACS, and permits an analysis of the stability of residency (for 
those who reside in the same house as one year ago--this, of course--averaged over a five-year period 
2006-2010), it does not provide data on tract-to-tract migration flows that would be necessary to 
examine the effects of net-migration on these estimates.  One possibility would be to discount the 2010 
population, restricting the age-specific vector to only to the number of women estimated to be present 
April 1, 2010, and to have been at the same residence for the entire prior year, then similarly discount 
the 0 to 1 Census 2010 population and make comparisons based on these adjusted totals.  To do so, 
however, would simply resolve to subtracting a constant proportion from both quantities--resulting in 
estimates of accuracy that are precisely those already reported in these comparisons.  Little marginal 
utility in understanding the accuracy associated with estimates based on remediated ASFRs is to be 
gained from this and it is true that the bias in comparison would be associated with both unremediated 
and remediated ASFR estimates.  As such, the marginal improvements associated with the method 
would be unaffected by this bias in estimating accuracy:  such bias is common to both sets of estimates. 
In the end, biases in the absolute measures of accuracy reported here should not be anticipated to bias 
the estimates of marginal improvement.  In spite of these limitations in the current study, it appears 
that remediated ASFR estimates represent dramatic improvements over the naive use of geocoded data.  

Mis-reporting of zip-codes in microdata inputs should be expected to introduce subtle and largely 
unmeasurable biases into the results reported here.  Here,  zip-code specific raising factors were 
employed that relied upon the ratio of geocoded to reported addresses at the zip-code level.  We are 
aware of no study that systematically reports the level of zip-code misreporting one might expect in an 
address-based dataset.  Adjustment factors could be inflated in cases where mis-reporting increases the 
number of births self-reported to be within a zip-code above the true level (making the adjustment ratio 
higher than in reality) and could be down-biased in the alternative scenario of under-reporting.  If we 
assume that most zip-code mis-reporting happens when the neighboring zip-code is incorrectly listed in 
a birth record, then in cases where zip-codes are larger than census tracts we should expect a greater 



 

 

level of error (Simpson, 2002) while in cases where the tracts are similarly-sized or larger than zip-codes 
we should expect smaller levels of bias (Fisher and Langford, 1995;  Sadahiro, 2000).  At present, with no 
additional information on the magnitude or spatial direction of such mis-reporting we are unable to 
account for this form of bias in evaluating our results.   

In spite of the limitations reported here, the clear and compelling result of this study is that spatially-
explicit remediation and imputation of geocoded births data is likely to substantially improve estimates 
of age-specific fertility for small geographic areas such as census tracts.  Applied demographers and 
population geographers interested in applying the method will be primarily constrained by availability of 
data inputs for estimating missingness by geographic area, the necessity of utilizing simulation modeling 
procedures in using ACS data, and by availability of GIS expertise.  Significant financial and time-
investment was associated with construction of the GPS MAF, totaling over $1,000,000.00 in direct costs 
and several years of person-effort by the authors of this paper and a core set of junior staff and student 
research assistants sometimes totaling 10 or more persons.  It is possible that estimation of missingness 
based on smaller datasets may be possible, but is unknown whether the use of multiple data sources, 
rather than treating building permits for example as a sample, improved the estimates of missingness 
made in this research.  For those demographers and geographers interested in applying this method, 
significant improvements in estimation of age-specific fertility will come at the cost of intensive data 
processing and modeling effort.   
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