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ABSTRACT 
 

 
            In recent years, unexpected level of mortality improvement has become an 
increasing challenge for life annuities business.  As a result, the need for robust and 
reliable models for mortality projection has become a growing issue among actuaries and 
policies makers. The model proposed by Lee and Carter in 1992 (Lee and Carter, 1992) 
seems to be generally accepted, because first it produced satisfactory fits and forecasts of 
mortality rates for various countries. Secondly, the structure of the Lee-Carter model 
allows the construction of confidence intervals related to mortality projections. To 
improve the performance of the Lee-Carter model several extensions to the original 
version have been proposed. 
            In this paper, we propose a modification of the Lee-Carter model that 
accommodates variations in age-specific parameters. The Lee-Carter assumption of 
constant age-specific pattern of mortality over the year is known to be unrealistic 
(Gutterman and Vanderhoof, 1999; Tuljarpurkar and Boe, 1998). The paper also proposes 
an extended weighted least square approach to find the model parameters. Finally, the 
paper investigates the horizon beyond which forecasts conditioned on past observations 
are no longer relevant. The economics notion of content function is used for this purpose.  
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1. INTRODUCTION 
 
Mortality forecasts have a long history in demography and actuarial science. 

Demographers used mortality forecasts for population projections, and actuaries used 

mortality forecasts for cash flow projections and the assessment of premium and reserves 

in life insurance and pension annuities. Official agencies also used mortality forecasting 

to support their policy decisions. Earlier models for mortality rates were deterministic, 

and include the Gompertz curve (1825), which provides a satisfactory fit to adult 

mortality, but overestimates death rates at ages greater than 80. The Perks (1932) logistic 

model (a generalization of the Gompertz curve) gives a relatively good fit to mortality 

rates over the entire adult range. The Heligman and Pollard (1980) curve provides a 

relatively good fit to mortality rates over all ages. Progresses in computational algorithms 

help handling complexes models, and the number of parameters is no longer an issue. 

Reviews of earlier contributions to mortality forecast and recent models are provided by 

Pitacco (2004), Wong-Fupuy and Haberman (2004) and Tuljapurkar and Boe (1998). 

Some recent studies shown that the mortality rates predicted from the classic parametric 

formulas were erratic (Stoto 1983; Murphy 1995). Stochastic models seem more 

appealing, because they associate a confidence error to each estimate.  

        In 1992, Lee and Carter presented a stochastic model, based on a factor analytic 

approach, to fit and predict mortality rates for United States. Since then, because of its 

simplicity and relatively good performance, the Lee-Carter (LC) model has been widely 

used for demographic and actuarial applications in various countries. For example, the 

LC model was used for Japan (Wilmoth 1993), the seven most economically developed 

countries (G7) (Tuljapurkar et al. 2000), Austria (Carter and Prskawetz 2001), Australia 

(Booth et al. 2002), Belgium (Brouhns et al. 2002), and the Nordic countries (Lundström 

and Qvist 2004; Koissi et al. 2006b). Despite its reasonable performance, the LC model 
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had several limitations (Lee 2000) which caused negative reactions from some actuaries 

(Gutterman and Vanderhoof 1999).  

 

1.1 Lee-Carter model 

      The Lee-Carter (1992) model is as follows           

        txtxxtxm ,, )ln(   , 0 tt  , 1 xx     (1.1) 

where txm , is the matrix of the central death rates at age x  ( Nxxx ,...,1 ) in year t  

( 1,...,1, 111  Ttttt ). The term tx, represents the deviation of the model from the 

observed log-central death rates and is expected to be Gaussian ),0(~ 2
,  Ntx . Model 

(1.1) is underdetermined because it is invariant under the transformations 

),/,(),,( txxtxx cc   and ),,(),,( cc txxxtxx   , for any constant 

c. The constraints insure a unique solution for (1.1). 

      By summing over the years, t, and using 0 tt  , an estimate of the age-dependent 

parameter, )ln()/1(ˆ ,txtx mT  , is obtained. The parameter x̂ is interpreted as the 

average pattern of mortality at age x.  By summing both sides of (1.1) over the ages, and 

using 1 xx  , an estimate of t , )ˆ)(ln(ˆ , xtxxt m   , is obtained. The 

coefficient t  represents the general level of mortality at time t.  

      An estimate for x , )/ˆ/()/)ln((ˆ
, ttm ttxx   , is obtained by differentiating 

both sides of (1.1) with respect to time. Then, the parameter x captures the relative 

sensitivity of the logarithm of the central death rates to change in the mortality index t . 

The function x  moderates the time-dependent element t  by age. 
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1.2 Motivations for proposed extensions. 

The  extensions proposed in the current paper address the following issues:  

1. Variations in age-specific parameters. The LC model assumes that the combined 

effect of past process will remain the same in the future (Lee 2000:85). As a 

consequence, the age-specific pattern of mortality change is kept constant over the 

year. Such an assumption, however, is not realistic (Tuljarpurkar and Boe 1998; 

Gutterman and Vanderhoof 1999:135). We extend the investigation of Carter and 

Prskawetz (2001) and introduce a modification of the Lee-Carter model that 

accommodates variations in age-specific parameters. With such formulation, 

predicting mortality rates requires forecasting not only the mortality index, but also 

the age-specific terms. 

2. Relevant length of forecast. Wong-Fupuy and Haberman (2004:80) and Alho and 

Spencer (1985:314) mentioned the issue of a reasonable length for a forecast and 

questioned the reliability of long-term forecasts. In economics, the forecast content 

function and content horizon (Galbraith 2003) are used to set the horizon beyond 

which forecasts conditioned on past observations are no more relevant. These notions 

are adapted to the present model.  

The paper is organized as follows. Section 2 presents the standard methods for estimating 

the parameters of the LC model. Some previous extensions of the model are also 

summarized. Section 3 deals with the extensions we propose. First, we present a 

modification of the LC which accommodates variations in the age-specific parameters. 

Then, we discuss the length of reasonable forecast horizon. The paper ends with some 

concluding remarks. 
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2. ESTIMATING THE PARAMETERS OF THE LC MODEL AND MORTALITY 

FORECASTING 

2.1 Singular Values Decomposition of ]ˆ)[ln( , xtxm   

Lee and Carter used Singular Values Decomposition (SVD) (Lawson and Hanson 1974) 

of the matrix ]ˆ)[ln( ,, xtxtx mY   to obtain estimates of x  and t :  

         tiix

r

i
itx VUYSVD ,,

1
, )( 



  ,                                                                   (2.1) 

where )( ,txYrankr  , }{ 21 r   are the ordered singular values of txY , , ixU , and 

itV , are the left and right singular vectors. The SVD code is available in standard 

mathematical software, such as MATLAB (Appendix A.1). By using the theorem of low 

rank approximation (first stated and proved by Eckart and Young (1936)), the rank h  

least square approximation of (2.1) is obtained  

         )(
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,

ˆ i
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i
xtiixi

h
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h
tx VUY  



 ,     rh                                          (2.2) 

where tiixi
i

t
i

x VU ,,
)()(   . Then, the rank h residuals associated with (2.1) are 

         tiix

r

hi
ixt VU ,,

1




  .                                                                                (2.3) 

The corresponding rank-h approximation least square errors is  

         



r

hi
ih

1

22  ,                                                                                        (2.4) 

which implies that the errors have similar variance. However, this assumption is violated 

for mortality data: the variance of the log-central death rate is approximately 

txtx dm ,, /1] )( ln [Var   (Wilmoth 1993:2), which is smaller at younger ages than at older 

ages (because there are fewer deaths at old ages).  
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      Some studies discussed the choice of a suitable value for h (Renshaw and Haberman 

2003; Booth et al. 2002), although the first order approximation ( 1h ) is used in Lee 

and Carter (1992), and most applications of the model. The proportion of variance 

explained by the thi term )( ,, tiixi VU of the decomposition (2.1) is given by 2
1

2 / j
r
ji   , 

and the total variance explained by a rank-h approximation is 2
1

2
1

2 / j
r
ji

h
ih    . It 

is clear that 10 2  h and the closer this value is to 1, the better is the approximation. 

For US data, Lee and Carter (1992) restrained the SVD approximation to the first order 

)1()1(
,11,1

)1(
,

ˆ
txtxtx VUY    and obtained an explained variance %7.922

1  . Tuljapurkar 

et al. (2000) also used a rank-1 SVD approximation for G7 countries and found an 

explained variance greater than 94%.  Li et al. (2004) used the standard LC for South 

Korea, with %852
1  . 

      A second stage in standard LC method involves finding a modified )(~
ˆ i

t , which 

adjusts the total number of death txx d , to the estimated number of deaths as follows: 

)
~
ˆˆˆexp( )()(

,,
i

t
i

xixtxxtxx Ed   , t , where txE ,  and txd ,  are the exposure to risk 

and the actual number of deaths at age x and time t. This step is necessary because the LC 

model  fits the logarithm of the death rates instead of the current death rates (Bell 1997; 

Lee 2000).  

       Predicting mortality with the LC model is reduced to forecasting the index t  using 

time series approaches (Brockwell and Davis 1996). In general an ARIMA(0,1,0) with 

drift, ttt c   1ˆˆ ,  is found suitable, though other ARIMA forms provided better fit 

to some data (Brouhns et al. 2002). 
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2.2 Previous Extensions of the LC Model 

2.2.1 Weighted Least Squares 

The parameters of the LC model can also be estimated using the Weighted Least Squares 

(WLS) suggested by Wilmoth (1993): 

       Minimize 2
,,11 ])[ln( txxtxtx

T
t

X
x mw                                            (2.5) 

The inverse of the sample variance is commonly chosen as weights (Barlow 1989:93). 

Since txtx dm ,, /1] )(ln  [Var   (Wilmoth 1993:2), a suitable choice is txtx dw ,,  , where 

txd ,  is the observed number of deaths for age-group x in year t.   

      The use of the term “weight” may suggest a summation to one, which does not hold 

here. An alternative choice is )/( ,,, txtxtxtx ddw   for 0, txd  and  0, txw  for 

0, txd , which gives 1,  txtx w  as expected. The WLS problem becomes:  

minimize 2
,,11 ])[ln( txxtxtx

T
t

X
x mdD    , ( 0)/(1 ,  txtx dD ) which is 

equivalent to (2.4). Wilmoth’s WLS approach gave satisfactory fit to data from Japan, 

1951-1990 (Wilmoth 1993), Austria, 1947-1999 (Carter and Prskawetz 2001), and the 

Nordic countries, 1955-1999 (Koissi et al. 2006b).  

 

2.2.2 Maximum Likelihood Estimation 

Wilmoth (1993) and Alho (2000) proposed using Maximum Likelihood Estimation to 

find the parameters in the LC model (1.1). This approach is based on a Poisson 

approximation of the number of death txD ,  presented by Brillinger (1986):  

      )(~ ,,, txtxtx EmPoissonD , where )exp(, txxtxm   .                          (2.6)  

The coefficients x , x and t are estimated by maximizing the full log-likelihood 

(Wilmoth 1993:5) 
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      )]!ln()exp()ln([ ,,,,,

1

1

1

1
txtxxtxtxtxtx

x

xx

Tt

tt
DEEmDl A   




          (2.7) 

       

       The Maximum Likelihood Estimation (MLE) allows non-additive heteroscedastic 

errors (Renshaw and Haberman 2003:255), and avoids the assumption of errors with 

constant variance present in the SVD approach (Lee and Carter 1992:660). The MLE 

formulation of the LC model is often referred to as the Poisson log-bilinear model from 

the paper by Brouhns et al.(2002), which provides a detail algorithm to minimize (2.7). 

The MLE was used to model death rates from Belgium (Brouhns et al. 2002), UK and 

Wales (Renshaw and Haberman 2003) and the Nordic countries (Koissi et al. 2006b). 

 

2.2.3 Expanded SVD 

Booth et al. (2002) investigated the performance of the LC model on Australian data after 

the second term of the SVD was incorporated in the approximation:  

         )2()2()1()1(
,22,2,11,1

)2(
,

ˆ
txtxtxtxtx VUVUY   .                              (2.8) 

Their result suggested that the second term tx VU ,22,2 , which represented 1.3 percent of 

the total variance in the log-central death rates, explained the cohort-period effect present 

in the data. As a result, the corresponding second order residuals exhibited less 

systematic pattern than the first order residuals (Booth et al. 2002:332). 

     Similarly, Renshaw and Haberman (2003) introduced up to the 5th terms of the SVD 

to fit mortality from England & Wales. This extension improves the fitting results in the 

sense that the additional terms (from the 2nd to the 5th) account for more than 4 percent 

(and nearly 13 percent for one group of data) of the total variance explained by the 

approximation. However, the standard LC model is still found attractive, because it limits 

the forecasting computations to the study of only one mortality index t̂  (Li et al. 2004). 
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2.2.4 Dealing with Uncertainties  

The original LC model incorporates uncertainty arising from all three parameters: 

)ˆ(Var x is computed through the variance of the death rates txm , over time, )ˆ(Var x can 

be computed by bootstrap, and )ˆ(Var t is derived from the time series model associated 

with the index t̂  (Lee and Carter 1992:670).  

      The bootstrap approach was the basis for likelihood-based methods of estimating the 

LC parameters. These methods assume that the observed number of deaths follow a 

Poisson distribution with mean equal to the expected number of death under the LC 

model. For the likelihood-based models, bootstrap and Bayesian technique were used to 

compute confidence intervals for all the LC parameters. 

      Brouhns et al. (2005) used a pair bootstrap procedure to compute the confidence 

interval of the LC parameters, and related predicted demographic and actuarial rates. The 

approach relies on sampling the matrix of number of deaths, txD , , from a Poisson 

distribution: )(Poisson~ ,, tx
b

tx DD , b=1,..., B, where B is a large number of samplings and 

b
txD , is the matrix of death obtained at the bth sampling. Then, for each b=1,..., B, the LC 

parameters are obtained by replacing txD ,  by b
txD ,  in (2.7).  

      Koissi et al. (2006b) used a residual bootstrap method. This approach consisted in 

sampling with replacement the matrix of deviance residuals Dr , which resulted from 

fitting observed central death rates with the maximum likelihood formulation of the LC 

model: 2/1
,,,,,,, )]ˆ()ˆ/ln()[ˆ( txtxtxtxtxtxtxD DDDDDDDsignr  , where txtxtx mED ,,, ˆˆ   

are the fitted number of deaths. A large number B of replications },,1,{ Bbr b
D   is 

generated, leading to corresponding B sets of LC parameters }ˆ,ˆ,ˆ{ b
x

b
x

b
x  . Then, the 

bootstrap percentile approach provides the desired confidence interval. 
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      Czado et al. (2005) applied Bayesian technique to the LC Poisson log-bilinear model. 

A probability distribution is assigned to x , x and t . The parameters of these laws are 

obtained by Markov Chain Monte Carlo simulations. The uncertainties associated with 

each estimate can then be obtained. A particularly attractive feature of this method is that 

the step consisting in modelling and predicting t  is incorporated in the simulation.  

      It is worth briefly mentioning that the two principal sources of uncertainties in a 

regression model are randomness and fuzziness, although the later generally is neglected. 

Koissi and Shapiro (2006a) proposed a fuzzy formulation of the LC model which 

incorporates randomness and fuzziness. The LC parameters x , x and t  are formulated 

as random fuzzy numbers, and their distributions are computed using Bayesian technique. 

      Many extensions to the original LC model were proposed leading to improvements in 

the model’s assumptions, the computation methods and the statistical properties of the 

estimated parameters. There are still few issues related to the LC model which raised 

criticisms among researcher. Next, we discuss some of these issues: the LC model under 

the condition of variations in age-specific parameters, and the search for a reasonable 

length of forecast.     

 

3. PROPOSED EXTENSIONS CRITICAL ANALYSIS OF LC 

 

3.1  LC under Variables Age-Specific Parameters 

In the LC model, the age-specific vectors x and x are treated as invariant in the sense 

that the age parameters obtained when fitting the data are kept unchanged during the 

prediction process. The hypothesis is that the relative change in mortality pattern by age 

observed in the past will remain unchanged. The possibility that such a “heroic 
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assumption” (Gutterman and Vanderhoof 1999:135) will be violated in the future has 

been discussed in several studies (Lee 2000; Gutterman and Vanderhoof 1999). In what 

follows, we conduct two studies which justify the need for reformulation of the 

x parameters.  

 

a- Preliminary studies 

Application of LC to four Eastern European countries 

The LC model is applied to mortality data of four eastern European countries: Bulgaria 

(1955-97), Hungary (1955-99), Lithuania (1960-2001) and Russia (1970-99). Figure 1 

depicts the resulting age-specific parameter x . High values of x  indicates that the rate 

of improvement in mortality at these ages is faster than in general (Lee, 2000:85), while 

the negative values at some ages mean that mortality is increasing.  As the figure 

suggests, in Bulgaria, from 1955 to 1997, the mortality rates for women aged 75 years 

and older has not improved. In Hungary, over the period from 1955 to 1999, the mortality 

rate for females aged 35 to 60 has worsened. In Lithuania, during the period 1960 to 

2000, similar conclusions were drawn for women aged 40 to 60 and women aged 75 

years and older,. The graph also shows that mortality among young Russian girls aged 12 

years and less has not improved (relatively to mortality at other ages) during the period 

from 1970 to 1999. It is reasonable to assume that the variation in mortality observed 

during these past periods will not be the same in future years. Especially, the rate of 

improvement for the period prior to the year 1991 (when the Russian federation was 

dislocated) is likely to be different from the age-specific values after 1992. In addition, 

the progress in medical research and political changes (such as entry in European Union, 

for some countries) are more likely to bring changes in the shape of the x function.  

Figure 1 is about here. 
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Application of LC to Finland, with variable periods 

The LC model is applied to Finnish (women) mortality rates over 35 periods, all starting 

from year 1955: ]1963;1955[)( iiPeriod  , 35,...,1i . Figure 2 depicts, for selected 

age-groups, x , the x coefficients by period. The years in the abscises represent the end 

of the observation period. The results show that for each age-group, the x  values are not 

constant over time. No regular pattern emerges from these graphs. However, the 

fluctuations in x are less “unpredictable” when the last twenty periods only are used. The 

straight line that represents x  is obtained by taking the entire period 1955-1998.  

      Figure 3 depicts the coefficients x for selected ages of Finish women. The graphs 

suggest that x values decrease linearly over the observation periods. Since the 

parameter x is a measure of the overall force of mortality at age x, the negative trend in 

x  is in accord with the observed improvement in mortality. For each period, the 

mortality index t has the expected (almost) linear decreasing trend (Figure 4).  In the 

following, we focus on the age-specific terms x and x . 

Figures 2-4 are about here. 

 

 b- Modeling the age-specific coefficients ),( sx and ),( sx  

      The variation in the coefficients x and x over the years, for each age x, suggests the 

use of a LC reformulation that includes the observation period. Carter and Prskawetz 

(2001:6) studied the trends in x and x  over variable time intervals with identical length. 

When using data from Austria (1947-1999), Carter and Prskawetz (2001:9) noted some 

differences (from 1.5 to 3.5 years) between observed and estimated life expectancies by 

observation period.  



 13

      Following the lead of Carter and Prskawetz (2001:8), we investigated an expanded 

LC model with a component related to the observation period.  For example, for 35 

observation periods, all starting from 1955, 

      ),()(),(),()),,(ln( txtksxsxstxm   ,                                                  (3.1) 

where 35,...,1s  and 19641955)1( t , 19651955)2( t ,…, 19981955)35( t . 

Our aim is to model and predict ),( sx and ),( sx , for each age-group }24,,1{ x .  

 

Modeling ),( sx  

The previous result suggests using a linear relation between x and the period )(st   

      sxaxasx  )()(),( 10 ,                                                                             (3.2) 

where 35,...,1s  are the number of “ex-post” periods. Table 1 shows the )(0 xa and )(1 xa   

values obtained using the Finnish data previously described. The slope 0a ranges between 

-0.0279 and -0.0043. Larger values (in absolute value) are obtained for younger ages. 

 

Modeling ),( sx  

      For each age-group x , the age-specific vector ),( sx is modeled using polynomial 

interpolation. The analysis of the residuals suggests that a polynomial of order 4 is 

suitable.  

    4
4

3
3

2
210 )()()()()(),( sxsxsxsxxsx                          (3.3) 

The coefficients are found using MATLAB software. The last sixth columns of Table 1 

display the )(xi  values obtained for each age-group. )(4 x and )(3 x  are very small 

compare to the other coefficients. The last column of Table 1 depicts )(4
0 xii  . Then, 

the LC model with variables age-specific parameters is as follows   
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 ),()(),(),()),,(ln( txtsxsxstxm   ,           ),0(~),( 2
 Ntx             (3.4) 

where sxaxasx  )()(),( 10  

           4
4

3
3

2
210 )()()()()(),( sxsxsxsxxsx   , 

            tsss ktt   0)1()( . 

            35,...,1s ;  sst  1963;1955)( ; 241 ,..., xxx  . 

Table 1 and Figure 5 are about here. 

 

c- Comparison with Standard LC model 

The standard LC (1.1) is used to fit Finnish (women) central death rates, from 1955 to 

1998. The estimates x̂ , x̂ and t̂ are obtained using SVD. Note that the parameters 

t are similar in both models. We only introduce variations in  and . For a period 

from1955 to (1998+n), we get  

 jxaxajx  )()(),( 10 , where nj  35 .                                                      (3.5) 

  4
4

3
3

2
210 )()()()()(),( jxjxjxjxxjx                        (3.6) 

Figure 6 displays the results obtained with the standard LC (denoted by “LC”) and Model 

(3.4) denoted by “period-LC”. The parameters ),( sx and ),( sx are forecasted over 5 

years. Almost no variation is observed between ),( sx and x̂ , whereas ),( sx fluctuate. 

In fact, it can be shown that, under (3.5), the extended model is equivalent to the standard 

LC1. This result suggests first applying graduation (Whittaker for example, see Verrall 

1996 and Shiu 1986) to the original series. Secondly, restricting the ex-post study to ten 

years backward may result in more accurate ),( sx    

 

                                                 
1 ln(m(x,t,s)) = (x,s) + (x,s) k(t) + (x,t) = a0(x) + a1(x) �j + (x,s) k(t) + (x,t) = A(x) + B(x) · K(x)  
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Figure 6 is about here. 

 

3.2 Forecast Horizon 

      The horizon of a forecast obviously is a relevant issue.  Nonetheless, very few studies 

on this topic can be found in the literature related to mortality models (Alho and Spencer 

1985; Booth et al. 2002), compared to economic forecast (Galbraith 2003; Oke and Öller 

1999; Diebold and Kilian 2001). For economic variables predicted with autoregressive 

models, Galbraith (2003) defined the “forecast content function” and the “content 

horizon” beyond which forecasts conditioned on past observations are no longer relevant. 

In this section, this approach is adapted to the LC model. 

 

a- Definitions (Galbraith, 2003) 

Given a sequence },...,1,{ Ttyt  of observations on a covariance stationary, ergodic, 

scalar process y, denote by },...,1,ˆ{ | Hsy TsT  the conditional forecasted values of y up to 

horizon H and denote by t
T
t yTy 1)/1(   the sample mean. At a certain time, the 

observed series },...,1,{ Ttyt  will be obsolete and will no longer, improve the forecasts. 

Hence 22
| )()ˆ( sTTsTTsT yyEyyE   , i.e. the forecasts based on unconditional mean 

will perform better. The relative variation between the conditional and unconditional 

mean squared errors is measured by the forecast content function  

    
))((

))(ˆ(
1

)(

)ˆ(
1)(

2

2
|

syMSE

syMSE

yyE

yyE
sC

sTT

sTTsT 







 ,  Hs ,...,1 .                            (3.7) 

where ))(ˆ( syMSE is the mean squared error of the conditional predictions 

and ))(( syMSE is the mean squared error for predictions based on the sample mean. 

When ))(())(ˆ( syMSEsyMSE  , the conditional forecasts TsTy |ˆ   is said to have a positive 
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content and the past observations improve the predictions. The content horizon as defined 

in Galbraith (2003) is the smallest forecast horizon 0s verifying 0)( sC  for 0ss  . A  -

level content horizon is such that )(sC  for ss   and )(sC  for ss  .  

 

b- Computation of the forecast content function   

For autoregressive series: tjj

p

j
t eyy  




1

0 , ),0(~ 2Net , the characteristic 

equation is given by jp
j

p
j

p 
  1 . The forecast content function differs as the largest 

root, max , of the characteristic equation verifies 1max   (Fuller and Hasza 1981). We 

compute the forecast content function of the LC parameter t , for Finish women.  

      The mortality index t is modeled as a random walk with drift: ttt u  1 , 

where ),0(~ 2 Nt . The associated characteristic function has a unique non-zero root 

equal to one. The observations are }1,,,{ 00  Ttttt  , where 

19550 t and 199910 Tt . Let 10 t , then the sequence of observations are indexed 

as follows },,1,{ Ttt  .  

      The forecasts verify 1| ˆˆ   sTTsT u  . Define )1,(   sTsTK  . Therefore (Fuller and 

Hasza 1981, Theorem 3.1) the conditional mean squared error (MSE) for K  is given by 







1

0

2)(
s

j

jj AMAKMSE  ; 









00

01
M , 










10

1 u
A such that 

























 

011
1 ttt e

A


. 

Then, the MSE for sT  is the first element of the matrix )(KMSEB  , denoted by )1,1(B .  

The mean squared error for predictions based on the sample mean )( 1
1

t
T
tT T  

  is 

2)())(( sTTEsMSE   . An analytical expression of this mean squared error for 

autoregressive process is given by Galbraith (2003, Appendix A).  
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c- Results 

Figure 7 depicts the forecast content function of the LC Kappa parameter for Finish 

women, based on data from 1955 to 1999. For horizon years greater than seven, )(sC  is 

less than zero. This means that the sample mean )( 1
1

t
T
tT T  

  provides a sufficient 

approximation to the forecasts sT  , beyond the seventh forecast horizon years. As a 

consequence, this result also suggests that the forecasted death rates and life expectancies 

produced with LC method are useful up to seventh year. This content horizon is shorter 

than the maximum horizons provided in various application of the LC model.  Alho and 

Spencer’ (1985) advice of not to exceed 15 years for forecast horizons was not 

pessimistic. 

Figure 7 is about here.  

 

 

4. CONCLUDING REMARKS 

       In this paper, we proposed a modification of the Lee-Carter which incorporates 

variations in the age-specific parameters. The parameters were computed for different 

periods. The time series obtained from this process are then modeled using polynomial 

interpolation. Such model is a realistic alternative to the standard LC assumption of 

constant age parameters, although it is less simple than the original model. 

          The paper also discusses the accuracy of the forecast length, using the forecast 

content function (Galbraith 2003). The results suggest that, beyond the seventh year, the 

past values of the mortality index are not fully relevant for predictions.  Thus, forecasts 

horizons might preferably not exceed ten years, to keep the relevance of the information 

they contain.  

 



 18

APPENDIX 

A.1 Singular Value Decomposition 

Denote by A , a nm  matrix of rank k . Then, there is an mm  orthogonal matrixU , an 

nn orthogonal matrix V and a nm  diagonal matrix such that (Lawson and Hanson 

1974:18):  

                      VUSA  ,                                                    (A.1)  

where )( jivV  is the transpose of matrix )( ijvV  . (A.1) has the following matrix 

representation (for nm  )  
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In particular, for ])[ln( , xtxmA  , x= 1,...,X, t= 1,..., T, the rank-1 approximation 

)1()1(
,11,1

)1(
,

ˆ
txtxtx VUY    gives   1,1,21,1

)1(ˆ
Xuuu    

and  1,1,21,11
)1(ˆ Tvvv   . By using the LC constraints (2.2), the estimates 

coefficients are finally   1,1,21,11,
)1( )/1(ˆ

Xxx uuuu  and 

 1,1,21,111,
)1( )(ˆ Txx vvvsu  . 

The MATLAB command “svd” produces the singular vectors U and V, and the 

eigenvalues i of a given matrix. The algorithm to solve the standard LC follows. 
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% Construction of Lee-Carter coefficients SVD method; 
% Input: matrix of central death rates;       Outputs: LC parameters;  
 
dratefin;                               %gives the matrice death rates Y; 
[X,T]=size(Y);                    %gives nber of row(ages) and columns(years) in Y;  
Y=log(Y);                            %takes the logarithm; 
 
% Construction of a(x)=(1/T)sum(Y);  
 
A=zeros(1,X);   A=sum(Y');        %initialization and transposee matrix; 
Asvd=(1/T).*A;                           %Asvd= Alpha in LC; 
Asvd=Asvd';                         %to obtain a matrix with X rows and 1 column; 
 
% Estimation of b(x) and k(t) by SVD under LC constraints; 
 
Z=zeros(X,T);                                %matrix ln(m(x,t))-alpha(x); 
  for i=1:X  for j=1:T  Z(i,j)=Y(i,j)-Asvd(i);    end;   end; 
 
[U,S,V]=svd(Z);                %SVD of ln(m(x,t))-alpha(x); 
u1=U(1:X,1:1);                  %u1 first column of U,lenght X=ages; 
v1=V(1:T,1:1);                  %v1 first column of V,lenght T=years; 
Bsvd=(1/sum(u1))*u1;        %Beta in LC; 
 
ss=sum(S);                              %largest value of S is ss(1); 
Ksvd=ss(1)*v1;  
Ksvd=Ksvd.*sum(u1);       %Kappa in LC;  
 
% Second stage estimation of k(t); 
 
deathfinf;                            %Read nber of deaths d(24,45); 
exposurfinf;                       %Read nber of exposures to risk of deaths e(24,45); 
 
% using Newton-Raphson theorem; 
err=1e-5; kadjff=zeros(30,45);       %20=nber of assumed iterations needed;    
 
kadjff(1,:)=Kff;                               %initial value of k adjusted; 
for j=1:45     kadjff(2,j)=kadjff(1,j)-(sum(eff(:,j).*exp(Aff+Bff*kadjff(1,j)))-
sum(d(:,j)))/(sum(eff(:,j).*Bff.*exp(Aff+Bff*kadjff(1,j))));  
i=2; 
while abs(kadjff(i,j)-kadjff(i-1,j))/abs(kadjff(i-1,j))>err 
  kadjff(i+1,j)=kadjff(i,j)-(sum(eff(:,j).*exp(Aff+Bff*kadjff(i,j)))-
sum(d(:,j)))/(sum(eff(:,j).*Bff.*exp(Aff+Bff*kadjff(i,j)))); 
  i=i+1;  end;  end; 
 
% Readjustement to obtain un k that satisfies the model constraint; 
kadjustff=kadjff(i-1,:)-mean(kadjff(i-1,:)); 
sum(kadjust);                               %to check that constraint is not violated; 
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Figure 1: x  parameter, Bulgaria (1955-97), Hungary (1955-99), Lithuania (1960-2001) 

and Russia (1970-99), Females (Data source: Human Mortality Database, 

www.mortality.org) 
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Figure 2: ),( sx parameter by observation period, Finland women, selected ages. 

The years, in abscises, are the end of the observation periods. 

 The straight line represents the ),( sx  value for entire period 1955-1999. 
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Figure 3: ),( sx parameter by observation period, Finland women, selected ages. 

The years, in abscises, are the end of the observation periods. 
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Figure 4:  ))(( st parameter by observation period, Finland women, selected periods. 

The years, in abscises, are the end of the observation periods. 
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Figure 5: Residuals, Polynomial Interpolation of  ),( sx , Finland Female, 1955-1999. 
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Figure 6: Comparison between fix and variable LC age-specific parameters, (a)  (b) . 
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Figure 7:  Forecast Content Function of LC Kappa Parameter, Finland Women. 
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Table 1 

Coefficients in ),( sx and ),( sx Modeling 

  alpha   beta           

Age alpha0 aplha1 beta4x(^-6) beta3x(^-4) beta2 beta1 beta0 sum(beta)

0-1 -3.9107 -0.0250 -0.4026 0.3647 -0.0011 0.0114 0.0708 0.0811
1-4 -6.7649 -0.0279 -0.1430 0.1153 -0.0003 0.0011 0.1286 0.1295
5-9 -7.6812 -0.0177 0.5668 -0.5030 0.0015 -0.0156 0.0849 0.0707

10-14 -7.9833 -0.0149 0.0457 -0.1107 0.0006 -0.0112 0.1197 0.1091
15-19 -7.5730 -0.0084 0.1634 -0.1623 0.0006 -0.0093 0.0866 0.0778
20-24 -7.3336 -0.0116 -0.2047 0.1456 -0.0003 -0.0003 0.0865 0.0859
25-29 -7.0756 -0.0122 -0.4900 0.4111 -0.0011 0.0096 0.0493 0.0578
30-34 -6.7572 -0.0133 -0.3921 0.3356 -0.0009 0.0080 0.0597 0.0667
35-39 -6.3827 -0.0125 -0.3310 0.2633 -0.0007 0.0041 0.0760 0.0795
40-44 -5.9867 -0.0113 -0.1964 0.1730 -0.0005 0.0061 0.0263 0.0319
45-49 -5.5725 -0.0107 0.0917 -0.0555 0.0001 0.0013 0.0233 0.0246
50-54 -5.1417 -0.0106 0.0123 -0.0009 -0.0001 0.0019 0.0196 0.0214
55-59 -4.6789 -0.0108 -0.0640 0.0601 -0.0002 0.0025 0.0219 0.0243
60-64 -4.1488 -0.0110 0.0867 -0.0433 0.0000 0.0023 0.0075 0.0098
65-69 -3.5549 -0.0119 0.1562 -0.0928 0.0001 0.0014 0.0144 0.0158
70-74 -2.9563 -0.0118 0.1931 -0.1240 0.0002 0.0013 0.0031 0.0046
75-79 -2.3773 -0.0113 0.2735 -0.1956 0.0004 -0.0011 0.0103 0.0096
80-84 -1.8873 -0.0095 0.2659 -0.1926 0.0004 -0.0010 0.0023 0.0017
85-89 -1.4355 -0.0082 0.2387 -0.1763 0.0004 -0.0008 -0.0015 -0.0019
90-94 -1.0557 -0.0070 0.2792 -0.2090 0.0005 -0.0024 0.0096 0.0076
95-99 -0.7881 -0.0053 0.5116 -0.3964 0.0010 -0.0069 0.0129 0.0069

100-104 -0.5636 -0.0043 -0.1324 0.0325 0.0002 -0.0080 0.0932 0.0854
105-109 0.0379 -0.0063 -0.5287 0.3613 -0.0008 0.0056 -0.0048 0.0001

 

Source: Authors calculation based on data from Human Mortality Database (2004) 
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