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Spatial modelling of households’ knowledge about arsenic pollution in South Asia: 

Evidence from Bangladesh  

Abstract 

Households’ knowledge about arsenic threat from drinking water is an important issue 

for public health and policy implication of Bangladesh. In this study, I use spatial 

statistical models to investigate the determinants and spatial dependence of households’ 

knowledge about arsenic risk. The binary joins matrix/ binary contiguity matrix and the inverse 

distance spatial weights matrix techniques are used to capture spatial dependence in the data. My 

analysis extends the spatial model by allowing spatial dependence to vary across the 

divisions and regions. I find positive spatial correlation in households’ knowledge 

across neighboring districts at district, divisional and regional levels but the strength of 

this spatial correlation varies considerably based on spatial weight. I also find that the 

literacy rate, daily wage rate of agricultural labour, arsenic status, percentage of red 

mark tube well of a district contribute positively significantly to the households’ 

knowledge. These findings have policy implications both at regional and national level 

for taking appropriate steps in mitigating the present arsenic crisis and to ensure arsenic 

free water in Bangladesh.  
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1. Introduction  

Econometric models taking into account spatial interactions among economic 

units have been increasingly used by economists over the last several years and some 

important advances have been done in both theoretical and empirical studies. Spatial 

econometrics is becoming more popular in many scientific fields including social 

sciences. More recently, spatial interaction has increasingly received more attention in 

mainstream econometrics as well, both from a theoretical as well as from an applied 

perspective (Anselin, 2001; Anselin, 2002; Anselin & Bera, 1998). Spatial econometric 

techniques have been developed to effectively capture spatial processes in natural or 

experimental data (Anselin, 1988, 2001; Haining, 1990; Coughlin & Garrett, 2004). 

Spatial dependence not only means lack of independence between observations, but also 

a spatial structure underlying these spatial correlations (Anselin & Florax, 1995).  

The modeling of spatial variation of arsenic threat in south Asia is a very 

important issue for a number of reasons. Natural arsenic (As) pollution of drinking 

water supplies has been reported from over 70 countries, a serious health hazard to an 

estimated 150 million people world-wide (Brammer & Ravenscroft, 2009). The high 

arsenic groundwater in Asia has become a priority health issue. Around 110 million of 

those people live in ten countries in South and South-East Asia: Bangladesh, Cambodia, 

China, India, Laos, Myanmar, Nepal, Pakistan, Taiwan and Vietnam. In South Asia, 

Bangladesh is the most arsenic affected country and it has been recognized as a big 

threat and challenge to public health. World Bank, UNICEF, WHO agreed that 

Bangladesh is in dire straits regarding the arsenic problem (Sharma, 2009). It is 

estimated that more than 65% of the population of Bangladesh live in arsenic 
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contaminated areas (Chowdhury, 2001) and are at risk of drinking water containing 

>50µg/L (Ng & Moore, 2005). Approximately 20 million people have already 

developed signs of arsenicosis. As a therapeutic measure, selenium has been reported to 

counteract arsenic toxicity (Wang, 2001). A good numbers of research are being carried 

out on the cause, characteristics and consequences of arsenic pollution on skin lesion. 

Only a few numbers of studies have been done on social and economic point of view 

(Caldwell, Mitra & Smith, 2003; Hanchett, 2004; Paul, 2004; Hassaan, Atkins & Dunn, 

2005; Nahar, Hossain & Hossain, 2007; Sarker, 2008) however, it is important to note 

that these studies ignore any spatial patterns that may be present in the data although it 

is a very crucial and critically important issue. When the spatial dependence is ignored, 

the OLS estimates will be inefficient, the t and F-statistics for tests of significance will 

be biased and the R2 measure of fit will be misleading (LeSage & Pace, 2004, Anselin, 

1988). In other words, the statistical interpretation of the regression model will be 

wrong. However, the OLS estimates themselves remain unbiased, contrary to what is 

sometimes suggested in the literature. Since the attributes associated with the built 

environment and natural amenities are spatially located, it is reasonable to hypothesize 

that health disorders like arsenicosis are spatially clustered based on neighboring 

socioeconomic, demographic and environmental attributes. While the application of 

explicit spatial econometric methods has recently shown a tremendous increase in the 

social sciences in general and economics in particular (Anselin, 2001), to date, there 

have been only a few of studies that employed spatial regression analysis in the study of 

health related data in South Asia. It is very important for us to identify the efficient 

and consistent influencing factors of the arsenic related issues in the arsenic affected 

areas at first, before planning of any mitigation methods and intervention programs for 
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arsenic free water. With this background, my study is focused on detecting the spatial 

dependence and investigating the determinants of households’ knowledge about arsenic 

contaminated drinking water. This paper is important for several reasons. First, the 

present study is the first to address the spatial dimension for environmental health 

problem awareness in Bangladesh, second, this methodology provides consistent and 

efficient estimation and third, my results have important implications for policy both at 

the regional and national level, especially those involving the design of regional 

coordination for arsenic free drinking water. 

 

2. Methods 

 

2.1 Data Sources 

The data used in this paper was collected from the six sources: (i) Bangladesh 

Multiple Indicator Cluster Survey (MICS) 2006 (BBS & UNICEF, 2007) for percentage 

of households who have known of arsenic contamination drinking water and percentage 

of red marks tube well: MICS 2006 was conducted in 1,950 primary sampling units and 

covered as many as 62,463 households throughout the country during June through 

October, 2006, (ii) Statistical Pocketbook of Bangladesh (BBS, 2008) for average 

household size of different districts, (iii) Statistical Yearbook of Bangladesh (BBS, 

2008) for literacy rate, (iv) Population Census 2001 for population density 

characteristics of different districts, (v) Directorate of Agricultural Extension personnel 

for daily average wage rate of agricultural labour and (vi) finally, aggregate data set of 

Groundwater Studies for Arsenic Contamination in Bangladesh for determining the 
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arsenic risk status of different districts which was conducted by British Geological 

Survey (BGS) and the Department of Public Health Engineering (DPHE) (BGS/DPHE,  

2001), Bangladesh. The final data set for this survey consisted of samples from 3,534 

tubewells from 61 of 64 districts and from 433 of the 496 upazilas of Bangladesh. The 

sampled area was approximately 129,000 km2, compared with a total area for 

Bangladesh of about 152,000 km2.  

 

2.2 District model 

A spatial lag model is a formal representation of the outcome of processes of 

social and spatial interaction. Spatial lag or regressive spatial autoregressive model 

includes a spatial lagged dependent variable on the right hand side of the regression 

specification (Anselin, 1988). A second approach to spatial autoregressive process or 

spatial autoregressive modeling is known as the spatial error model. Examining the 

spatial effects on households knowledge about arsenic threat in drinking water of 

Bangladesh, I used the basic model of spatial correlation developed by Anselin (1988), 

Cliff & Ord (1981) and Coughlin & Garrett (2004) allows for spatial dependence in the 

dependent variable or in the error component. 

εβρ ++= XWyy   …………………………………………………………………..(1) 

uW += ελε …………………………………………………………………………(2)

Where X is an (n x (k+1)) matrix of observations on the explanatory variables, y and ε 

are n x 1 vectors and β is a (k+1) vector. If E (εε) = σ²І, where І is the nxn identity 

matrix then the arrangement properties of the attributes are irrelevant to the 

specification of the model. Wy  and εW  are exogenously specified nxn weights 
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matrices, lag and error, respectively. The scalar ρ and λ are spatial lag and spatial error 

coefficients, respectively. 

The following district model was used for detecting the spatial effect: 

µελεεββ
βββββρ

+=+++

+++++=

Wwherermtwell asstatus 

dwratepdensitylratehhsizeWyy

,,65

43210
…. (3) 

where y is the percentage of households who have known about arsenic contaminated 

drinking water for a district of Bangladesh, hhsize is the house hold size, lrate is 

literacy rate, pdensity is the population density in per square kilometer, dwrate  is 

daily wage rate of agricultural labour and asstatus  is the binary variable taking value 

1 for the districts that are under arsenic risk (average arsenic concentration >0.10µg/L) 

according DPHE/BGS survey and 0 otherwise, rmtwell is percentage of red marks tube 

well in a district.  

 

2.2.1 Spatial weights matrix (W) 

The spatial weights matrix W is a N X N positive squared, non-stochastic 

matrix, whose elements wij show the intensity of interdependence between the spatial 

units i (in the row of the matrix) and j (column) in which the rows and columns 

correspond to the cross-sectional observations. A weight matrix summarizes the spatial 

relationships in the data. Many alternative weighting schemes for W have been used in 

the literature. It is important to note that the elements of the weights matrix are 

exogenous to the model; that is, it is assumed that the researcher knows how the 

observations are related to each other. Typically, they are based on the geographic 

arrangement of the observations or contiguity. The cross-sectional spatial weights 

matrix formalizes the potential correlation among districts for which many alternative 
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weighting representations are possible. I consider the binary join matrix and the inverse 

distance spatial weights matrix specifications of W in my empirical models to highlight 

any differences in spatial patterns of household knowledge. 

 

2.2.1.1 Binary contiguity matrix 

One of the most common weights matrix in spatial econometrics literature is 

the binary joins matrix/ binary contiguity matrix (Anselin, 1988; Case, 1992; Cliff & 

Ord, 1981; Coughlin & Garrett, 2004) where wij = 1 if observations i and j (i ≠ j) share a 

common border, and wij = 0 otherwise. Consequently, two spatial units are either 

neighbors or are not, hence the use of the term binary contiguity. By convention, the 

diagonal elements of W are set to zero (implying that locations are not neighbors of 

themselves). Because the weight matrix shows the relationships between all of the 

observations, its dimension is always N X N, where N is the number of observations. 
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A limitation of the binary joins matrix is that it assumes equal weights across 

all bordering spatial neighbors and does not allow the effective capture of spatial 

distances across all cross sectional. For the estimation of spatial regression models, I 

used row-standardized binary spatial weights matrix for meaningful interpretation of the 

results. Row normalizing gives the weight matrix some nice theoretical properties. The 
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row standardization consists of dividing each element in a row by the corresponding 

row sum, hence it is effectively including a weighted average of neighboring values into 

the regression equation. In this specification, the elements of matrix W are 

row-standardized by dividing each wij by the sum of each row i. The resulting 

row-standardized weights matrix is likely to become asymmetric, even though the 

original matrix may have been symmetric.  
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2.2.1.2 Inverse distance matrix 

A limitation of the binary joins matrix is that it assumes equal weights across 

all bordering spatial neighbors and does not allow the effective capture of spatial 

distances across all cross sectional units. Thus, I also considered the various measures 

of spatial distance that have been discussed in the literature (Bodson & Peeters, 1975; 

Coughlin & Garrett, 2004; Dubin, 1988; Garrett & Marsh, 2002; Hern´andez-Murillo, 

2003). Measures of spatial contiguity include the distance specification between 

districts, where wij = 1/dij, the inverse distance squared, where wij = 1/ d2
ij and 

exponential distance decay, where wij = exp(−dij). As the distance between districts i and 

j increases (decreases), wij decreases (increases), thus giving less (more) spatial weight 

to the district pair when i ≠j. In all cases, wij = 0 for i = j. While there is no consensus on 
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how distance between cross-sectional units should be measured, I follow 

Hern´andez-Murillo (2003) and Coughlin & Garrett (2004) and consider the distance 

between district population centers. 

 

2.3 Relation between spatial lag (ρ) and spatial error (λ) coefficients 

The scalar ρ is the spatial lag coefficient, positive spatial correlation exists if ρ> 

0, negative spatial correlation if ρ< 0, and no spatial correlation if ρ= 0 and λ is the 

spatial error coefficient. The errors are positively correlated if λ > 0, negatively 

correlated if λ < 0, and spatially uncorrelated correlated if λ = 0. The cases under the 

consideration of the models (1) and (2) are following: 

Case (i): ρ = 0, λ = 0 

Under this assumption, spatial lag weight matrix component pWy  and spatial 

error weight matrix component ελW  will be zero and estimating the parameter β, then 

the general spatial model (1) and (2) reduce to the standard regression model. There is 

no spatial lag or serial error correlation in this model. 

Case (ii): ρ≠ 0, λ = 0 

The second case focuses on the spatial lag and ignoring the presence of spatial 

error correlation. If setting λ= 0 and estimating (ρ, β), it is spatial lag model which is 

clearly more meaningful. The general spatial model equation (1) and (2) tends to spatial 

lag model (1). In such models, the dependent variable in location i is not only 

determined by covariates (X) specific to location i, but also by the value of the same 

dependent variable at other locations.  

Case (iii): ρ = 0, λ≠ 0 

The third case focuses on the error term and ignoring the presence of spatial lag 
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correlation. If ρ= 0 and estimating the other parameters λ and β, then the general spatial 

model (1) and (2) take the equation (2) form.  

Case (iv): ρ ≠ 0, λ≠ 0 

The fourth case considers the both spatial lag and spatial error term. In spatial 

lag + error model all three parameters (ρ, λ and β) are estimated. These models may be 

viewed in practice as resulting from poorly specified lag matrices Wy which results in 

spatial interactions in the error terms that need to be taken into account Wε (Anselin & 

Bera, 1998). The most general spatial lag model and error model under the case four 

takes the following form;   

µελβ +++= WXpWyy ……………………………………………..(6) 

 

2.4 Divisional/Regional Model 

The basic spatial model detailed above assumes that the influence of spatial 

dependence is the same for all districts. To reveal differences in spatial correlation for 

geographic regions, I modify equations (1) and (2) to allow for different spatial 

correlation coefficients in four divisions and two regions of Bangladesh. I use four 

ex-administrative divisions in the contiguous 64 districts. The spatial model with 

regional/divisional spatial correlation coefficients may be written as:  

εβρ ++=∑
=

XyWy
D
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Here, D denotes the total number of divisions/regions and ρk and λk denote the spatial 

lag and spatial error lag coefficients, respectively, for division k. Each coefficient, ρk, 



 11

measures the average correlation between a district in region k and the spatially 

weighted household knowledge of all other districts. Wk remains the (N × N) spatial 

weights matrices w
k
. Each matrix W

k 
is constructed by pre-multiplying by a dummy 

variable that equals unity if district i is located in division/region k, and zero otherwise. 

In the case of a contiguity matrix, household knowledge in district i located in region k 

to be affected by household knowledge of all districts j that border district i, regardless 

of whether district j is in the same division/region as district i. 

 

2.5 Model comparison 

To compare models, I consider the Akaike`s Information Criterion (AIC) 

(Akaike, 1974) and the Bayesian Information Criterion (BIC) (Schwartz, 1978) based 

on the ML method. AIC, a penalized log likelihood criterion is defined by  

AIC = -2 ℓ + 2K…………………..………………………………………….......…..(9) 

Where ℓ is the log likelihood and k is the number of parameters.  

SC = -2 ℓ + K ln (n) …………………….…………………………………….. (10) 

Where n is the number of observations. 

In theory, the lower AIC and SC/BIC are the better specification. 

 

3. Results and Discussion 

Table 1 provides descriptive statistics for the variables employed in the models. 

These statistics provide mean, maximum and minimum values and standard deviation. 

The spatial relationship among locations in a spatial framework is often modeled via a 

contiguity matrix.  
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3.1 Spatial estimates with binary join weights 

Table 2 presents the spatial estimation results. Column [1] in table 2 

corresponds to a standard regression model where no spatial effects among the 

neighboring districts are taken into account. The coefficients represent the effects of the 

explanatory variables on household knowledge about arsenic pollution. Column [2] 

corresponds to a specification where the spatial interaction among the districts is 

accounted. This model suggests that the knowledge of households about arsenic risk 

depends positively on neighboring districts households’ knowledge. Columns [2], [3] 

and [4] present the results from three alternative specifications in which I account for 

spatial effect using binary join spatial weights to determine contiguity among the 

districts. As I discussed before, this scheme considers as neighbors only those districts 

that are adjacent to each other. Column [2] corresponds to the model with a spatial lag 

in the dependent variable, column [3] corresponds to the model with a spatial 

dependence in the error term and column [4] corresponds to the model with a spatial lag 

and error term. As I can see from the table, the spatial dependence coefficients are 

statistically significant. In particular, the spatial lag coefficient ρ indicates the presence 

of interaction among the districts. Specifications [1] through [4] suggest that the literacy 

rate of districts has a positive impact on the knowledge of arsenic pollution of 

households. The same is true for daily wage rate of agricultural labour and arsenic status 

of a district. Household size and population density per square kilometer have negative 

impact on the knowledge of arsenic pollution of households but the household size is 

statistically significant in all models and population density per square kilometer is not 

significant in case of spatial lag and spatial lag & error model. In the models 

corresponding to the binary spatial weights, the spatial lag in the dependent variable is 
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statistically significant from zero at the 1 percent level and the spatial lag in the error 

term is not statistically significant. The results from a join spatial model (spatial lag 

+error) in column [4]. The numerical interpretation of the estimated coefficients is as 

follows. The findings in column [2] of table 2, for example, suggest that a 1% increase 

the literacy rate, on average, an increase of about 0.20 percentage households’ 

knowledge about arsenic pollution. A decrease of household size, 1 person per 

household induces increase 5.43 percentage households’ knowledge about arsenic 

pollution. The interpretation for the dummy variable is straightforward, as the 

coefficient indicates that the district arsenically not safe the  households who know 

about arsenic pollution is about 7.14 percent higher, on average, than the districts which 

is arsenically safe. The results from the models that both the spatial lag (column 2) and 

error (column 3) models reveal that the spatial lag and error coefficients are 

significantly different from zero. However, the Akaike Information Criterion (AIC), 

Schwarz Criterion (SC) and the log-likelihood statistics all reveal that the spatial lag 

model presented in columns 2 is provided a better fit than the spatial error model. The 

results from the model that include both the spatial lag and error term (column 4) 

reveals that only the spatial lag coefficient is significantly different from zero. The 

findings are presented in table 2 suggest that spatial dependence in district households’ 

knowledge may be the best model using a spatial lag. This is supported by the AIC and 

SC, which are directly comparable across models and weigh the explanatory power of a 

model (based on the maximized value of the log-likelihood function).  

 

3.2 Spatial estimates with inverse distance spatial weights 

An alternative definition of neighborhood effects in the households’ knowledge 
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about arsenic pollution allows knowledge of household in nearby districts that are not 

necessarily adjacent to affect a specific district. In this case, the use of inverse-distance 

spatial weights is more appropriate to identify spatial interactions among the distance 

spatial weights of districts. Columns [2] through [4] in table 3 present the estimation 

results using spatial weights computed as the inverse distance between districts’ 

population centers. The results are qualitatively similar to those in table 2. The results 

from a joint spatial model, in column [4], suggest spatial interaction in both the 

dependent variable and in the error term. The coefficients for the spatial lag in columns 

[2] and [4] are positive, supporting the conclusion that there is a positive interaction in 

the households’ knowledge among the districts. The spatial coefficients are statistically 

significant in model 2 and model 4 but the spatial error coefficients are statistically 

insignificant in model 3 and model 4. The AIC, BIC and log likelihood statistics suggest 

that the spatial models show better fit than non-spatial model (column1of table 3). 

Among the four specifications, log likelihood value is lowest for join (spatial lag + 

error) model (column 4) and AIC and SC are lowest in spatial lag model (column 2). 

The findings from table 3 suggest that the spatial lag model is the best model for 

expressing the spatial dependence of district households’ knowledge.   

 

3.3 Divisional and regional spatial estimates  

Table 4 presents the results from four specifications that allow for regional and 

divisional differences in the spatial correlation coefficients by using binary joins and 

inverse distance contiguity. Because my results in table 2 and table 3 indicate that a 

spatial lag models are the appropriate specifications, therefore, I only consider for 

divisional and regional differences in spatial lag coefficients among the four 
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specifications. Column 1 reports the estimates from the spatial lag model that allows for 

regional-specific spatial lag coefficients at the administrative division level, while 

Column 3 allows regional-specific spatial lag coefficients at the regional (North, South) 

level when neighbors are defined as common border. I find considerable evidence that 

the effects of spatial correlation in the dependent variable vary by division. As reported 

in column [2] of table 4 two regional correlation coefficients are positive and 

statistically significant at the 1 percent level; furthermore, visual inspection of the 

estimated coefficients suggests differences in the magnitude of spatial correlation 

between a district in a given region and all other districts. The regression that allows for 

division level spatial coefficients (column 1 of table 4) provides a same picture with the 

region level model (column 3). Estimates of positive and significant spatial correlation 

in four divisions range from 0.6923 to 0.6236 when neighbors are defined by binary 

joins matrix and 0.3760 to 0.3166 when spatial weight are defined by inverse distance 

matrix. Estimates of spatial correlation in two regions are 0.6197 and 0.6526 when 

neighbors are defined by binary joins matrix and 0.3332 and 0.3328 when spatial weight 

are defined by inverse distance matrix. All spatial coefficients for regional are positive 

and statistically significant (P<0.01). The AIC, BIC and log likelihood statistics suggest 

that the binary joins matrix contiguity spatial models show better fit than inverse 

distance spatial weights matrix models in both regional and divisional models.   

    

3.4 Equality of spatial coefficients of divisional and regional models 

The spatial coefficients in the Dhaka, Chittagong, Khulna and Rajshahi 

divisions as well as Northern and Southern regions of Bangladesh are substantially 

larger when neighbors are defined by common border as opposed to inverse distance. 
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The results from the divisional and regional specific models in table 4 suggest that the 

spatial effects on district households’ knowledge are more or less homogeneous across 

divisions and regions. Further evidence is reported in table 5 on basis of table 4, where I 

present results the seven pair wise hypothesis tests of the equality of the spatial 

correlation coefficients when neighbors defined as common border from the fourteen 

possible pair wise equality tests at the divisional level and regional level. There are six 

pair wise equality tests for model 1 at the divisional level and one pair wise equality test 

for model 3 at the regional level of table 4. Using the common-border (binary join 

matrix) neighbor definition, the test results are shown that the spatial correlation for 

districts in each division is statistically homogenous from the correlation in other 

divisions, with the exception of the Rajshahi and Khulna divisions. The test results 

(column 2 and 4 of table 4) indicate that spatial correlations are not significantly 

different across all divisions and regions when neighbors are defined by the inverse 

distance.  

 

4. Conclusions 

In this study, I estimate spatial econometric models to explore the spatial 

dependence in the knowledge of households about arsenic pollution like environmental 

health problem. This study is the first to directly model and provide estimates on the 

spatial interdependence of a district households’ knowledge about arsenic contaminated 

water and the approach taken here affords the estimation of consistent and efficient 

coefficients. The results from spatial models strongly indicate that the households’ 

knowledge about arsenic contaminated drinking water are combination of the 

household characteristics, arsenic related factors of individual districts and the 
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households’ knowledge of their neighbors districts. Five characteristics- literacy rate, 

daily wage rate of agricultural labor, household size, arsenic status and percentage of 

red mark tube well are significantly related to household knowledge of a district. Based 

on the AIC, SC and log likelihood, all of the spatial models are preferred to the without 

spatial weight specification, but the spatial lag model that utilizes the binary joins 

contiguity weights matrix provides the best fit of the data. The models in which I 

assume a common spatial lag coefficient for all districts, this results indicate that one 

percentage increase in the average households’ knowledge of neighboring districts 

generates between a 0.33 and 0.61 percentage increase of a given district households’ 

knowledge, depending on the specification. Using either a binary or inverse distance 

weights matrix in the estimation of spatial effects, this results provide strong evidence 

that significant spatial correlation exists in district, divisional and regional level models. 

These results suggest that district should pay particular attention to policies in 

neighboring districts and policy maker should realize that improving the households’ 

knowledge level in neighboring districts are likely to affect households’ knowledge in 

their own district, therefore, a key issue for policy development is how to stimulate 

educational attainment, promote daily wage of agricultural labor and decrease 

household size and population density could increase household knowledge and result 

in sustainable development and poverty alleviation of regions that are both knowledge 

on arsenic pollution and economically lagging. This needs to be addressed both in terms 

of national level policies and more emphatically within regional and sub-regional 

development strategies than it has been hither. 
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Table 1. Descriptive Statistics of Variables 

 

Variables Mean Maximum Minimum Standard 

Deviation 

Households who have knowledge 

about arsenic contamination (%) 

77.98 98.50 

 

30.80   18.48 

 

Household size  4.74 5.94 3.85 0.46 

Literacy rate (%) 43.78 65.90 28.00 8.52 

Population density (per sq. km) 951.64 5857.60 65.39 732.11 

Daily wage rate of agricultural 

labour (TK.) 

185.31 250.00 130.00 12.22 

Arsenic status 0.72 1 0 0.45 

Red mark tube well (%) 10.03 10.59 0 49.52 
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Table 2 Spatial estimates with binary weights of the knowledge of households 
about arsenic contaminated drinking water 
 

Variable Coefficients 

No Spatial Effect (1) Spatial Lag (2) 

Constant 15.1360 
(14.5759) 

8.7413 
(11.2115) 

Literacy rate (%) 0.3059** 
(0.1418) 

0.1986** 
(0.1004) 

Daily wage rate of agricultural 
labour (TK.) 

0.3918*** 
(0.0567) 

0.1770*** 
(0.0540) 

Population density  
(per sq. km) 

-0.0040** 
(0.0016) 

-0.0015 
(0.0013) 

Household size  -6.6984*** 
(2.3774) 

-5.4292*** 
(1.8318) 

Arsenic status (Dummy) 12.27132***  
(3.0532) 

7.1476*** 
(2.4615) 

Red mark tube well (%) 0.3576*** 
(0.1090) 

0.2079** 
(0.0864) 

Rho -- 0.6108*** 
(0.0911) 

Log Likelihood -224.6958       -207.6679 

AIC         465.3916 433.3358 

BIC 482.6626 452.7657 

Standard error in the parentheses. Asterisks ** and *** indicate statistical significance at the 5% and 

1% levels, respectively. 
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Table 3: Spatial estimates with inverse-distance weights of the knowledge of 
households about arsenic contaminated drinking water 
 

Variable Coefficients 

No Spatial Effect (1) Spatial Lag (2)  

Constant 15.1360  
(14.5759) 

8.1300   
(13.4457) 

Literacy rate (%) 0.3059** 
(0.1418) 

0.2718** 
(0.1298) 

Daily wage rate of agricultural labour 
(TK.) 

0.3918*** 
(0.0567) 

0.3015*** 
(0.0576) 

Population density  
(per sq. km) 

-0.0040** 
(0.0016) 

-0.0042*** 
(0.0015) 

Household size  -6.6984*** 
(2.3774) 

-4.9151**    
(2.2261) 

Arsenic status (Dummy) 12.27132***  
(3.0532) 

9.3102*** 
(2.9065) 

Red mark tube well (%) 0.3576*** 
(0.1090) 

0.3191*** 
(0.1000) 

Rho -- 0.3332*** 
(0.0930) 

Log Likelihood -224.6958       -218.8461 

AIC         465.3916 455.6921 

BIC 482.6626 475.1221 

Standard error in the parentheses. Asterisks ** and *** indicate statistical significance at the 5% and 

1% levels, respectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Table 4: Divisional and regional spatial estimates of the knowledge of households 
about arsenic pollution 
 

Variables Coefficients 

Divisional Spatial Lag  Regional Spatial Lag 
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Binary 
join (1) 

Inverse 
distance (2) 

Binary 
join (3)  

Inverse 
distance (4) 

Constant 

 

-1.8912   

(14.2902) 

2.5762   

(17.5653) 

1.0168   

(12.5161) 

8.2198   

(15.6276) 

Literacy rate (%) 0.2549**  

(0.1210) 

0.2196**  

(0.1078) 

0.2448**  

(0.1161) 

0.2792** 

(0.1403) 

Daily wage rate of 

agricultural labour (TK.) 

0.1826*** 

(0.0574) 

0.3260*** 

(0.0631) 

0.1812***   

(0.0534) 

0.3014*** 

(0.0581) 
Population density (per 
sq. km) 

-0.0023 
(0.0014) 

-0.0036**  
(0.0017) 

-0.0016   
(0.0013) 

-0.0042*** 
(0.0015) 

Household size  -4.6135**    

(2.3269) 

-4.2527   

(2.778) 

-4.8057**  

(1.8682) 

-4.9236** 

(2.3505) 

Arsenic status (Dummy) 8.1779***   

(2.4742) 

8.7845***   

(2.9862) 

7.0255***    

(2.4305) 

9.3110***   

(2.9075) 

Red mark tube well (%) 0.1666**   

(0.0819) 

0.3287***   

(0.1149) 

0.2168**  

(0.0856) 

0.3190*** 

(0.1007) 

ρ1 (Dhaka ) 

 

ρ2 (Chittagong)  

 

ρ3 (Khulna) 

 

ρ4 (Rajshahi) 

 

ρ1 (North) 

 

ρ2 (South) 

0.6532***   

(0.1001) 

0.6547***  

(0.1108) 

0.6236*** 

(0.0932) 

(0.6923)*** 

(0.1025) 

 

0.3166*** 

(0.1030) 

0.3448**   

(0.1431) 

0.3685*** 

(0.1097) 

0.3760***   

(0.1106) 

 

 

 

 

 

 

 

 
0.6526***

(0.0953)   

0.6197*** 

(0.0901) 

 

 

 

 

 

 

 

 

0.3328*** 

(0.0995) 

0.3332***   

(0.0931) 

Log Likelihood -206.1423 -217.9901   -206.8093 -218.846 

AIC          436.2846  459.9802 433.6186    457.692 

BIC 462.1912 485.8868 455.2074 479.2808 

Standard error in the parentheses. Asterisks ** and *** indicate statistical significance at the 5% and 

1% levels, respectively. 
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Table 5: Spatial coefficients equality with binary join weights for divisions and 
regions  
 

 Dhaka Chittagong Khulna 
 

Rajshahi 
 

North South 

Dhaka ---- ns ns ns   

Chittagong ns ---- ns ns 

Khulna ns ns ---- * 

Rajshahi ns ns * ---- 

North  ---- ns 

South  ns ---- 

Asterisk * indicates statistical significance at the 10% and ns means statistical insignificance. 

 

 


