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[note: This is a rough start to the paper more than an extended abstract. The
remainder of the paper (which is under construction) finishes the development of
the two approaches, describes the implementation via MCMC, shows results applied
to simulated data, and then shows results applied to reall data using respondent’s
education and parent’s education.]

Estimation of survival probabilities for a birth cohort, and the influence of covari-
ates on them, generally requires longitudinal data. However, in the case of covariates
that are fixed across age (say by early adulthood), differential survival based on such
covariates produces changes in the population distribution of the fixed characteristics.
This change can be used to recover the parameters of a survival model. This paper
develops and demonstrates two methods for estimating the parameters.

Method 1: Using sample means and variances

The population mean for a discrete random variable, x, is:

µx =
∑
S

p(x)× x,

and the population variance is:

σ2
x =

∑
S

p(x)(x− µx)2,

where S is the sample space for x, and p(x) is the proportion of observations in the
population that are in category x.

For an x (like education) whose values are fixed across age (at some age), the
proportion of individuals in a given category of x at a given age changes in response
to differences in the survival rates by levels of x. Therefore, µx and σ2

x change as well.
If we track the population mean and variance across time, then:

µxt =
p00S0t(x0) + p10S1t(x1) + . . .+ pk0Skt(xk)

p00S0t + p10S1t + . . .+ pk0Skt

=

∑k
i=0 pi0Sit(xi)∑k
i=0 pi0Sit

,
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and:

σ2
xt =

∑k
i=0 pi0Sit (xi − µxt)2∑k

i=0 pi0Sit

In these equations:

• µxt and σ2
xt are the mean and variance, respectively, for x in a population cross-

section at time (age) t

• pa0 is the proportion of the population at level a of x at t = 0

• Sat is the probability of survival to time t for members of the population at level
a of x

• xa is the value of x at level a, and x ranges from 0 to k, and

• the denominators in both equations arise from the fact that applying a survival
probability to a baseline proportion necessarily requires rescaling the sum of
the proportions to unity.

Thus, we have shown that cross-sectional population means and variances of x at
a given time are a function of the initial distribution of x and survival to the time of
measurement. This result implies that differential rates of survival by levels of x may
be estimated from repeated cross-sectional data. Indeed, for the case of two cross-
sections, this has already been shown (Hill, 1999). However, only relative survival
differences across levels of x can be obtained via logit modeling.

Here, we suggest that absolute survival can be estimated when more than two
cross-sections are available and one is willing to establish “prior” distributions for
relevant model parameters. First, a parametric survival function that depends on x
can be established.

A common parametric model for a general mortality hazard is the two-parameter
logistic model:

h(t) =
αeβt

1 + αeβt
.

This two-parameter model has been found to be the best model for human mortality—
especially at older ages—in previous research (see Kannisto?, Vaupel et al).

Demographically, the relationship between the hazard function at time t and the
survival function at t is:

S(t) = exp

{
−
∫ t

0

h(a)da

}
.

Substitution yields:
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S(t) = exp

{
−
∫ t

0

αeβa

1 + αeβa
da

}
.

Using u = 1 + αeβa, then du = αeβaβ. Thus:

−
∫ t

0

αeβa

1 + αeβa
da = −(1/β)

∫ t

0

du

u

= −(1/β) ln(1 + αeβa) |t0

= (1/β) ln

(
1 + α

1 + αeβt

)
= ln

(
1 + α

1 + αeβt

)(1/β)

Thus:

S(t) =

(
1 + α

1 + αeβt

)(1/β)

We can make survival dependent on x by decomposing α as α = γ0 + γ1x, where γ1
is the effect of a one-unit increase in x on survival. So:

µxt =

∑k
i=0 pi0

(
1+γ0+γ1xi

1+(γ0+γ1xi)eβt

)(1/β)
(xi)∑k

i=0 pi0

(
1+γ0+γ1xi

1+(γ0+γ1xi)eβt

)(1/β)
and

σ2
xt =

∑k
i=0 pi0

(
1+γ0+γ1xi

1+(γ0+γ1xi)eβt

)1/β
(xi − µxt)2∑k

i=0 pi0

(
1+γ0+γ1xi

1+(γ0+γ1xi)eβt

)(1/β) .

Here, the parameters of interest include γ0, γ1, β, and the vector of initial proportions
P . Particular interest centers on γ0 and γ1—absolute levels of baseline survival and
the difference in survival rates by levels of x—while the other parameters are, to some
extent, nuissance parameters.

β can be considered a “senescence” parameter; that is, the general pattern of
survival that is unrelated to x. And the vector of initial proportions in categories of
x may be of descriptive (or model-evaluative) importance only.

From a Bayesian perspective, we would like a posterior distribution for the param-
eters given the population mean and variance, and that distribution can be written
generically as:
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p(γ0, γ1, P, β|µ, σ2) ∝ p(µ, σ2|γ0, γ1, P, β)p(γ0, γ1, P, β),

with the former term on the right hand side being the likelihood function, and the
latter being the prior for the parameters (see Lynch, 2007). The choice for the
priors “might” be somewhat arbitrary. However, given the data available in most
applications, we discovered appropriate prior distributions of the form:

β ∼ N(.09, .01)

γ0 ∼ N(.0036, .0019)

γ1 = (γ0 − γ1)

In other words, β is basically constrained to a region specified by its prior, γ0 is
constrained to a specified interval, and γ1 is a direct function of γ0, and for P , we
assume each p to be uniformly distributed on the unit interval with the only constraint
being that

∑
p = 1.

A key difficulty with estimating this model is that the likelihood function contains
the unobservable (from a practical standpoint) quantities µ and σ2. In fact, we never
observe µt nor σ2

t . (We also never observe P ). Instead, in repeated cross-sectional
surveys, we observe the sample statistics x̄t and s2t . Thus, the posterior distribution
needs to be rewritten in terms of observed quantities (i.e, actual data).

p(γ0, γ1, P, β|x̄, s2x) ∝ p(x̄, s2x|µx, σ2
x)p(µx, σ

2
x|γ0, γ1, P, β)p(γ0, γ1, P, β).

The latter term on the rhs remains the prior as discussed above. The first term is the
likelihood function, now written in terms of observed data. The second term, in fact,
given our specification at the onset, is not a probability distribution at all, but rather
an algebraic identity. That is, given values for γ0, γ1, β, and P,, µ and σ2 are direct
functions of these parameters. Thus, this portion of the posterior can be removed,
but embedded is a key assumption: µ and σ2 are a product only of survival. In other
words, migration, returning to education, and non-random measurement error are
not included as possible sources for change in µ and σ2.

The likelihood function can be established by recognizing that x̄t ∼ N(µt, σ
2
t /nt)

under the CLT. Furthermore, while under the assumption that x ∼ N(µ, σ2), then
(asymptotically) s2 ∼ N(σ2, 2(σ2)2/n), when x is not normal (as is the case with edu-
cation, especially given that its distribution changes over time), s2 ∼ N(σ2, (σ2)2 [2/(n− 1) + k/n]),
where k is the kurtosis of the distribution.

Thus, the complete likelihood function for the observed sample mean and variance
is (given that the mean and variance are independent, conditional on the various
parameters), generically:
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p(x̄, s2|µ, σ2) ∝
T∏
t=0

f(x̄t|µt, σ2
t , nt)

T∏
t=0

f(s2t |σ2
t , nt, kt),

where f() are normal density functions as specified above. k is technically the kurtosis
of the population distribution of x, but for simplicity, we use the sample kurtosis at
each time t in estimation.

Ultimately, then, the required data for estimating γ0 and γ1 include the sample
mean, the sample variance, the sample size, and the sample kurtosis at each cross-
sectional wave of a study. Estimation can be performed using MCMC methods, as
we discuss later.

Method 2: Using Multinomial Counts

Most of the information required to estimate γ0 and γ1 from sample data are available
from the sample statistics discussed in the previous section (mean, variance, kurtosis,
and overall sample size). However, the sample distribution kurtosis is merely a sum-
mary measure of the relative counts in each level of x. Thus, even more information
is contained in the cross-sectional wave-specific counts of individuals in each category
of x. These counts can be incorporated into a typical multinomial likelihood function,
with some slight adjustment.

Recall that a simple multinomial mass function is:

p(X|P ) ∝
K∏
k=1

pxkk ,

where K is the total number of categories in x, pk is the probability that an individual
falls in category k of x, and xk is the count of observations in category k of x.

Under our scenario, we have counts of individuals in the various categories of x at
different points in time. Thus, the extended likelihood function for counts would be:

L(X|P ) ∝
T∏
t=1

(
K∏
k=1

pxktkt

)
.

As before, p depends on the proportion of observations in a given category of x at
a base time point and on survival across time. Difficulty with using this likelihood
function directly arises because, at any given wave of a cross-sectional study, the sum
of the proportion of respondents in all categories of x is 1. Furthermore, given that
repeated cross-sectional studies always measure only survivors of a cohort at a given
age, the counts of individuals in a category of x do not directly inform estimates of
survival. Instead, the relative proportions of individuals in each category do. Thus,
our likelihood function must adjust the observed proportions in each category of x
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at each age for the change in the absolute proportions remaining due to differential
survival.

Thus, pt = pt/
∑

t(pt). So:

pkt = Sk0 × pk0Skt/

(∑
k

pk0Skt

)

1 Estimation of parameters

Posterior distributions of the model parameters can be obtained via Metropolis-
Hastings algorithms based on the posterior distributions described above. For the
sake of an example, we used GSS data and created 3 categories of education (0,1,2).
Table 1 shows the data for the 1921-1926 cohort.
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