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Abstract

This paper presents state-of-the-art econometric models of city population
growth in India. Although forecasts of city growth are urgently needed
in poor countries to address the challenges they will face in development,
environment, and climate change, city-level population forecasting in these
countries is still uncommon. However, the data needed to support forecasting
are becoming more readily available across a range of poor countries, and
in some countries a solid empirical foundation for modelling now exists.
India offers not only longitudinal data at the city level for a great number
of cities from 1901 to 2001, but also provides disaggregated time-series of
important demographic determinants of this growth, state-level urban total
fertility rates, child mortality rates, and rates of migration. In methodological
terms, this paper combines panel data spatial econometrics with multi-level
modelling. We depart from conventional models of spatial correlation in
allowing spatial effects to emerge not only from geographic distance, but
also from the political and economic context in which the city is situated,
with important influences at the state and regional level in India as well as
spill-over effects from neighboring cities. To estimate these effects in India,
both classical and Bayesian methods are applied. Our initial analysis shows
that urban fertility rates display very strong positive effects on city population
growth rates and confirms that city growth is spatially correlated. These
results will be extended with more additional data and models in which spatial
correlation stems from an explicitly multi-level structure.
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University, New Haven, donghwan.kim@yale.edu. Mark R. Montgomery, Stony Brook University
and Population Council, New York, mmontgomery@popcouncil.org.
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1 Overview

This paper presents state-of-the-art econometric models of city population growth
in India. Although forecasts of city growth are urgently needed in poor countries
to address the challenges they will face in development, environment, and climate
change, city-level population forecasting in these countries is still uncommon. Part
of the difficulty is that spatially specific data on the determinants of city growth
are often lacking. For instance, city-level fertility rates are rarely available in
developing countries (including India) although reasonable proxies for the city-level
demographic rates are provided by the rates of higher-level administrative units
(e.g., states).

This paper develops a method that combines panel data spatial econometrics
(Kapoor et al. 2007; Kim 2011) and multi-level modeling (Goldstein 1999). We
depart from conventional models of spatial correlation in allowing spatial effects to
emerge not only from geographic distance, but also from the political and economic
context in which the city is situated, with important influences at the state and
regional level in India as well as spill-over effects from neighboring cities.

Efforts to incorporate spatial econometrics into multi-level modeling are still
in the formative stage.1 Corrado and Fingleton (2011) gives a formal discussion
of spatial econometrics in multi-level modeling for cross-sectional data, as does
Yamagata et al. (2011). To the best of our knowledge, no published paper deals with
panel-data spatial econometric models having a multi-level structure.

We apply our new methods to Indian city growth from 1901 to 2001 using an
unusually detailed dataset that supplies information on city population growth and
its demographic determinants in a spatially explicit manner. Both classical and
Bayesian methods are used in estimating the city growth model. Our initial results
indicate that urban fertility rates display very strong positive effects on city growth
rates in India, and we find that city growth is spatially correlated (Kim 2011). This
paper extends the initial analysis with updated data and a multi-level specification.

2 Econometric specifications

To analyze and forecast the growth of India’s cities, we first translate each city’s
series of population counts into a series of growth rates—this can be done for
cities with three or more population records—and then link to these growth rates
information on urban total fertility rates, child mortality rates, and rates of migration.

1In the spatial statistics literature, some papers discuss incorporating spatial effect in multi-level
modeling, including Langford et al. (1999), Chaix et al. (2005), Gelfand et al. (2007), and Chaix
(2010).
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The conversion of the dependent variable from population counts to growth rates
may be understood as follows.

Consider an idealized city with index i, nested in state j, whose boundaries are
fixed from time t to t +1, and for which Pi, j,t and Pi, j,t+1 are the populations at these
two time points. Let Bi, j,t represent total births to city i residents in state j from t to
t +1 and let Di, j,t represent total deaths. Of all those who reside in city i of state j
at period t, a total of Oi, j,t migrate away from i to all other areas k 6= i, and Mi, j,t

residents of other areas in-migrate to the city. Hence, we can express population
growth rate of city i in state j, gi, j,t , as

gi, j,t ≡
Pi, j,t+1−Pi, j,t

Pi, j,t
= bi, j,t −di, j,t +mi, j,t −oi, j,t , (1)

with bi, j,t = Bi, j,t/Pi, j,t , a fertility measure that is not unlike a crude birth rate for
the city, and likewise for the measures of mortality, in-migration, and out-migration.
Demographers are well aware that bi, j,t is heavily influenced by city i’s age and sex
composition, as is the di, j,t mortality measure. Migration rates are also strongly
age-dependent and in some contexts also vary importantly by sex. Note that mi, j,t

and oi, j,t will tend to vary over i in that the migration sending and receiving areas k
that are linked to city i by migration networks—these may be other cities or towns
as well as a multitude of rural areas—will differ from one i index to the next.

Reality departs in many ways from this idealized accounting scheme for city
population growth, most importantly in that the set of places that are defined to
constitute city i can and often will change over the period from t to t + 1, so
that the measured version of gi, j,t will include another component reflecting net
population increments over the period (or decrements) produced by boundary
changes. Moreover, although the equation above is an accounting identity, its
right-hand-side elements are not well measured in readily accessible demographic
datasets.

Indeed, nationally representative demographic surveys do not generally supply
estimates of demographic rates that are meaningful at the level of individual cities,
with capital cities sometimes being an exception. These surveys have also tended
to give short shrift to migration, and in particular do not often collect information
on the location (by name) of an area from which an in-migrating respondent ar-
rived. Although it is possible to measure urban crude birth rates by combining
age data from survey household listings with births data collected from women of
reproductive age, reliable measures of crude death rates cannot be collected in this
way (information on adult mortality is required) and are generally quite difficult to
obtain. In short, a considerable gap separates the fertility, mortality, and migration
measures in the accounting scheme of equation (1) from their closest counterparts
in accessible empirical data.
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Figure 1: India urban demographic rates by state along with its national counterparts
(in red), 1971 - 1999. Data source: National Commission on Population in India.

Basic Framework

For each city, we have converted population counts for each period t0 to t1 given in its
data series into continuous growth rates, gi, j,t0 = (lnPi, j,t1− lnPi, j,t0)/(t1− t0). The
econometric growth model, inspired by but certainly not identical to the accounting
framework spelled out above, is set out as equation (2),

gi, j,t = β0 +β1TFR j,t +β2Q j,t +D′i, j,tγ +X′i, j,tδ + vi, j,t . (2)

In this equation gi, j,t is the estimated population growth rate for city i in state j
at time t, and the fertility and mortality components of growth are represented by
the state-level urban total fertility rate TFR j,t and Q j,t , the state-level urban child
mortality rate.

In India, as is the case in most developing countries, no city-level demographic
rates are available. In their place we employ state-level urban fertility and mortality
rates, which for India are available for an impressive span of time. Figure 1(a)
shows substantial state-level differences in Indian urban total fertility rates, and
also displays the changes in these rates over time2. For the illustration presented
here, urban total fertility rates serve as our main explanatory variable along with
urban infant mortality rates. Our initial analysis which uses national-estimate urban
fertility rate shows that urban total fertility rates (TFR) display very strong positive
effects on city growth rates (Montgomery 2008; Kim and Montgomery 2011).

2We continue our efforts to collect India’s disaggregated (i.e. subnational) demographic data
including migration. Figure 2(a) shows urban in-migration rates of 80 sub-states for three time periods
which we recently collected from IPUMS. Though national-level rate of urban in-migration (in red
in the table) is stable over time, regional variation is substantial. This migration component will be
incorporated in the future.
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Figure 2: India in-migration rate for 80 sub-states along with it national level (in
red), 1983, 1987, and 1999. Data source: IPUMS.

We include in Xi, j,t a set of dummy variables recording city i’s population size,
which as we will see, turns out to be an important influence on the rate of population
growth. We also include here a set of ecosystem indicators, which we discuss in
more detail in the next section. The vector Di, j,t contains a set of dummy variables
indicating the start-of-period and end-of-period units in which the city’s population
is recorded. As will be seen in the next section, city populations recorded in the UN
data are defined as different boundary concepts. In principle, of course, a number
of additional city-specific explanatory variables could be introduced to explain city
growth. Variables that are fixed over time present no particular difficulties; those
that change with time, however, would themselves need to be forecast in the process
of generating city growth forecasts.

We also need to address the properties of vi, j,t , the regression disturbance term.
An error-components specification provides a sensible entry-point for our analysis.
In such specifications, the disturbance term is represented as a composite,

vi, j,t = ui, j +ηi, j,t (3)

containing one component, ui, j, that is specific to city i and whose value can
be estimated as ûi, j. The estimate ûi, j is necessary to forecast city growth. To
estimate the ui, j, Bayesian and classical take different procedure. In Bayesian,
ui, j is estimated inside Bayesian Markov Chain Monte Carlo (MCMC) estimation
algorithms by considering ui, j as an unknown model parameter (Chib 1996; Kim
2011). In classical approach, the Goldberger (1962)’s best linear unbiased prediction
(BLUP) procedure shows how to estimate it (Taub 1979; Baltagi and Li 2004).
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Spatial econometrics in multi-level structure

We need to place additional structure on the error terms to account for multiple
spatial effects. Equation (4) outlines a specification containing unobservable state
effects µ j which is both time-invariant and city-invariant. For any given state, this
term induces correlation in the error terms of the cities of that state, and gives us a
means of estimating within- and between-state variances in city growth.

vi, j,t = ui, j +µ j +ηi, j,t (4)

Equation (5) presents the more conventional Cliff and Ord (1969) type of spatial
dependence. In this specification, the disturbance vi, j,t for city i is directly linked,
via ρwi,k, to vk, j,t , its counterpart for city k. The spatial autocorrelation coefficient
ρ and a pre-specified spatial weight wi,k determines the size and direction of the
relationship. This model specification has difficulty in estimation when there are
missing observations in panel data, that is, panel data are unbalanced (Baltagi et al.
2007; Kim and Montgomery 2011). We use our Fortran programs to estimate the
model.

vi, j,t = ρ ∑
k 6=i

wi,kvk, j,t +ui, j +ηi, j,t (5)

Equation (6) is a combined model of equations (4) and (5).

vi, j,t = ρ ∑
k 6=i

wi,kvk, j,t +ui, j +µ j +ηi, j,t (6)

3 Data

City Population Data

City population data come from the latest version of the United Nations cities
database (United Nations 2010) which is a panel dataset, containing city population
counts for thousands of individual cities over time. Though the UN cities database
covers cities in almost all of the countries, we limit the scope of our analysis in this
paper to a single country, India3. For India, the database contains population counts

3The UN monitors all cities with populations of 100,000 and above; when a given city crosses this
threshold, the Population Division endeavors to reconstruct its history (Montgomery and Balk 2011).
The United Nations Population Division is continually expanding and correcting its city population
series, devoting substantial effort to the task every two years to prepare the next edition of World
Urbanization Prospects, and making steady incremental progress in the interim. See Montgomery and
Balk (2011) for more details.
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Figure 3: Population records on some 400 cities in India, 1901 - 2001. Data source:
UN cities database 2010 version (United Nations 2010).

from 1901 to 2001 for some 400 cities. Figure 3(a) shows the number of cities in
the database over time. For any given city, the time interval between records is 10
years with a few exceptions (Figure 3(b)). The number of records varies over city,
as summarized in Figure 3(c). For India, city’s records are expressed in terms of
either city proper or urban agglomeration. As Figure 3(d) shows, for the India cities
with two or more entries in the 2009 database, there are cities – 8.4 percent of the
cities – whose statistical concept measuring population changes over time. The city
proper is the more common concept in India, with the populations of 66.7 percent
of India cities being consistently recorded in this way.

Figure 4(a) depicts the distribution of city population counts in India which are
used to calculate growth rates. Of the 2, 627 population counts recorded, about 44
percent fall in the range between 100,000 and 500,000 persons. There are also some
records for cities as small as 5,000 in population. Figure 4(c) shows the distribution
of city growth rates for all cities and time periods available since 1901. Over this
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Figure 4: City population records and city growth rates, All cities in India, 1901 -
2001, Data source: UN cities database 2010 version (United Nations 2010).

long period, the median growth rate recorded in the dataset is 2.45 percent and the
mean is 2.56 percent. As the figure shows, there are instances of city population
decline in these data as well as cases of rapid growth at rates of 10 percent and
above. Figure ?? shows city growth rate by state.

The right-hand side components

Limiting our city growth analysis to a single country (i.e. India) in this analysis, we
test more disaggregated urban vital rates rather than their national-level counterparts.
Both state-level estimates of urban fertility and child mortality rates come from
National Commission on Population in India (http://populationcommission.
nic.in). As seen in Table 1(a) and 1(b), they are currently available for the time
periods from 1971 to 1999. With the state-level urban vital rates in hand, our panel
data analysis is restricted to the time periods where the right-hand components of
the city growth econometric models are available though city population data covers
more extended time periods from 1901 to 2001.
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We also include ecozone variables: inland water, LECZ (low elevation coastal
zone), and degree of aridity along with city’s average slope and elevation. The
ecozone data are in a raster format of geospatial data, which are linked to city
growth rate using GIS/geospatial analysis (see Kim (2011) for more details).

4 Results

Basic panel data analysis

Table 1 shows basic panel data analysis of city population growth in India for three
time periods 1971, 1981, and 1991. Three basic model specifications are used here:
random-effects model, fixed-effects model, and pooled OLS model which have
different assumption on the variance-covariance matrix of the regression error terms.
Annual percentage growth rate of city population is used as the dependent variable.

As shown in the table, the start-period state urban TFR has very strong positive
effects on city growth. The coefficient ranges 0.529 – 1.019 (depending on model
specification), meaning that a drop of 1 child in the state-level urban TFR is asso-
ciated with a drop of 0.529 to 1.019 percentage point in the rate of city growth in
India. The fixed-effects estimate of the total fertility rate coefficient is by far the
largest in this set of estimates – This result is coincident with our previous result.
The start-period urban child mortality also has significant effect on city growth
though the effect is small.

The results show that city size is also an important determinant of city growth.
Larger cities tend to grow more slowly than do cities under 100,000 population
(which is the omitted category in the regression specification). Cities with 100,000
to 500,000 persons experience lower growth rate of 0.694 – 0.725 percentage point
than cities under 100,000 persons.

The effects of ecological and geophysical characteristics are not straightforward
in India. These are time-invariant dummy variables, so the effects can be estimated
with pooled OLS and random-effects specifications. The inland water dummy
variable has positive sign but its statistical significance does not hold. However,
cities in LECZ experience higher growth rate of 0.591 – 0.621 percentage point than
non-LECZ cities. The results show that the degree of aridity, slope, and elevation
have no significant impact on city growth in India.
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Analysis of spatial effects: Multilevel modeling

Table 2 shows Bayesian results of city growth panel data models with multi-level
structure. We use a 2-level structure with city and state. Spatial effect stemming from
multilevel nested structure is seldom considered in panel data econometric analysis.
In India, district is more lower-level administrative unit than state. However, most
of districts contain only one city in the data, the district level is not considered.

The model combines panel data econometric technique and multilevel modeling
technique each of which has been developed separately – (the former in economics
and the latter in social science, especially in education and geographic studies).
For Bayesian, both the fixed-effects and random-effects specifications for the 2
levels (i.e. city and state) are used. In multileveling literature, the fixed-effects
specification, here for state-specific effects, is seldom used. Table 3 shows their
classical results (only for random-effects specifications).

Analysis of spatial effects: Spatial econometrics

Table 4 shows Bayesian results of city growth spatial econometric models in India. In
methodological term, it is a panel data random-effects model with spatial correlated
errors when panel data is unbalanced. The unbalancedness of panel data gives
additional technical difficulty in estimating in this model specification since the
matrix of spatial weights, wi,k in Equation (5), differs over time. This model is
developed by Kim and Montgomery (2011) for Bayesian and Baltagi et al. (2007)
for classical.

The model needs geographic information (e.g. latitude and longitude coordi-
nates) of cities to specify the spatial weights wi,k between cities i and k. Let di,k
be a distance between city centroids. We use spatial weights specified as row-
standardized version of inverse distance, wi,k = d−α

i,k /∑
Nt
k=1(d

−α

i,k ) with a parameter
α where Nt is the number of city observations at time t. This specification implies
that the linkage between the growth rate disturbance terms of cities i and k grows
weaker the more distance the two cities are. Also, the degree of weakness of link-
age depends on the parameter α (α > 0). Distances are expressed in kilometers,
measured by formula of the Haversine great-circle distance.

Table 4 shows results when we set α as either 2 or 1. When α = 2, the spatial
autoregressive coefficient ρ is positive, 0.493 or 0.482, indicating that city growth
disturbance is positively correlated. The start-period urban TFR is still statistically
significant but the coefficient becomes smaller than one when ρ = 0. We can this
happening in other variables in the models. When When α = 1, ρ is very high, 0.903
or 0.899, and urban TFR has very small values of coefficient and lose statistical
significance. However, other variables have similar results as those when α = 2.
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Table 2: Bayesian city growth panel data models with 2-level (city-state) structure, Cities in
India. 1971–1991

Model 2 Model 3

2-level FE 2-level RE 2-level RE

State Urban TFR 0.845 0.7223 0.7067
(0.1764) (0.1504) (0.1481)

State Urban Q5 -0.01636 -0.01104 -0.01089
(0.00649) (0.005745) (0.005701)

100 <= CitySize < 500 -0.6888 -0.608 -0.6447
(0.233) (0.1643) (0.1662)

500 <= CitySize < 1,000 -1.047 -0.5477 -0.6184
(0.4491) (0.2757) (0.2845)

CitySize >= 1,000 -1.203 -0.2467 -0.3624
(0.6304) (0.3309) (0.3434)

Inland Water 0.2151
(0.1665)

LECZ 0.2562
(0.2344)

Dry subhumid -0.04054
(0.2216)

Semiarid 0.258
(0.2371)

Arid and above 0.05151
(0.8877)

Slope 0.002271
(0.001874)

Elevation 3.164E-5
(5.355E-4)

Constant 1.754 1.468
(0.4698) (0.5212)

Standard deviation of state-specific effects σµ 0.5424 0.501
(0.1548) (0.1539)

Standard deviation of city-specific effects σu 0.6156 0.6242
(0.09072) (0.09313)

ση 1.278 1.294 1.295
(0.04519) (0.0465) (0.04671)

DIC (deviance information criterion) 2401.53 2277.12 2282.62

Posterior mean and posterior standard deviation (in parentheses) are shown in the table.
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Table 3: Classical city growth random-effects models with 2-level (i.e. city-state)
structure, Cities in India. 1971–1991

Model 1 Model 2 Model 3

State Urban TFR 0.823 0.722 0.709
(5.73) (5.02) (4.99)

State Urban Q5 -0.011 -0.011 -0.011
(-1.87) (-1.96) (-1.95)

100 <= CitySize < 500 -0.610 -0.645
(-3.73) (-3.90)

500 <= CitySize < 1,000 -0.552 -0.621
(-2.00) (-2.20)

CitySize >= 1,000 -0.254 -0.365
(-0.77) (-1.07)

InlandWater 0.219
(1.32)

LECZ 0.249
(1.09)

Dry subhumid -0.046
(-0.21)

Semiarid 0.248
(1.04)

Arid and above 0.051
(0.06)

Slope 0.002
(1.20)

Elevation 0.000
(0.05)

Constant 0.883 1.752 1.466
(2.50) (3.84) (2.87)

Standard deviation of state-specific effects σµ 0.565 0.516 0.482
(3.88) (3.78) (3.46)

Standard deviation of city-specific effects σu 0.649 0.633 0.641
(7.72) (7.46) (7.45)

ση 1.292 1.286 1.286
(28.38) (28.29) (28.26)
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Table 4: Bayesian city growth regression models with spatially correlated errors, Cities
in India. 1971 - 1991. Spatial weights are 1/dα

i,k where di,k is the Haversine great-circle
distance between cities i and k. Spatial weights are row-standardized.

Model 1 Model 2

α = 2 α = 1 α = 2 α = 1

State Urban TFR 0.568 0.063 0.525 0.062
(3.47) (0.35) (3.31) (0.35)

State Urban Q5 -0.011 -0.012 -0.012 -0.012
(-2.05) (-2.30) (-2.21) (-2.46)

100 <= CitySize < 500 -0.574 -0.525
(-3.65) (-3.22)

500 <= CitySize < 1,000 -0.604 -0.490
(-2.24) (-1.80)

CitySize >= 1,000 -0.182 -0.060
(-0.54) (-0.18)

Constant 1.79 3.406 2.458 3.908
(3.70) (2.59) (4.77) (3.05)

Spatial autoregressive coefficient ρ 0.493 0.903 0.482 0.899
(7.68) (18.74) (7.21) (18.37)

Standard deviation of city-specific effects σu 0.765 0.771 0.750 0.749
(10.11) (10.55) (9.82) (9.66)

σε 1.23 1.220 1.227 1.215
(28.22) (29.17) (27.90) (27.76)

Note: Results come from Bayesian MCMC samples. Bayesian Z-statistics in parenthe-
ses which is calculated by dividing posterior mean by posterior standard error. Controls
for city definition included, but the coefficients are not shown.
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A Implementing and developing models

Most of models in the paper are implemented with WINBUGS for Bayesian and
STATA for classical except the spatial econometric model. Below shows Bayesian
random-effects model with spatial correlation when panel data are unbalanced.
It is re-printed here from our previous work (Kim and Montgomery 2011). It is
programmed with Fortran 95.

Random-effects model with spatial correlation

Here we describe the Bayesian estimation method for unbalanced panel data with
both random effects and spatially correlated disturbances. Consider gt , a vector
of growth rates of all cities available in time t whose dimension Nt is the number
of observations for time t, with t = 1, . . . ,T . (Note that the data are now ordered
differently from what was assumed above.) For each time t the city growth model is
written as

gt = Xtθ +vt

vt = ρWtvt + ε t

ε t = Dtu+ηt

in which the spatial weight matrix Wt is of dimension Nt×Nt . Its diagonal elements
are all zeros and its off-diagonal elements are wi j. The vector u = (u1, · · · ,uN)

′ is an
N×1 vector of random effects, and the matrix Dt is of dimension Nt ×N which is
obtained from an N×N identity matrix by extracting the rows corresponding to cities
that provide records at time t (Baltagi et al. 2007). Assume that ηt ∼N (0,σ2

ηIt).
The posterior distribution of the model, p(θ ,u,σ2

u ,σ
2
η ,ρ|g,X), can be simu-

lated using a Metropolis-within-Gibbs algorithm (Tierney 1994), which is a com-
bination of the Gibbs sampler and Metropolis-Hastings methods. The priors are
essentially the same as those of the random-effects model, with the addition of
σ2

η ∼ iG(v0/2,s0/2) and an improper prior for ρ .
Using the block (θ), σ2

u , σ2
η , and ρ , the Metropolis-within-Gibbs algorithm

proceeds as follows:

• Define B = In− ρWn with Wn = diag(W1, · · · ,WT ), X̃ = BX with X =
(X′1, · · · ,X

′
T )
′
, and g̃ = Bg with g = (g′1, · · · ,g

′
T )
′
.

• Define M1 = M0 +σ−2
η X̃′X̃, and D = (D′1, · · · ,D

′
t)
′
.

• Draw θ from

θ ∼N

(
M−1

1

(
M0θ 0 +σ

−2
η X̃

′
(g̃−Du)

)
,M−1

1

)
.
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• Define, for each i, g̃i = n−1
i ∑t g̃it and X̃i = n−1

i ∑t X̃it .

• Draw ui from

ui ∼N

(
niσ

2
u

niσ
2
u +σ2

η

(g̃i− X̃iθ),
σ2

u σ2
η

niσ
2
u +σ2

η

)
.

• Draw σ2
η from

σ
2
η ∼ iG

(
n+ v0

2
,
(g̃− X̃θ −Du)′(g̃− X̃θ −Du)+ s0

2

)
.

• Draw σ2
u from

σ
2
u ∼ iG

(
N +h0

2
,
u′u+ p0

2

)
The kernel of the full conditional posterior distribution of ρ is as follows.

p(ρ|θ ,u,σ2
u ,σ

2
η ,g,X) ∝ |B|exp

(
− 1

2σ2
η

(g̃− X̃θ −Du)′(g̃− X̃θ −Du)
)

The random-walk Metropolis-Hastings algorithm for ρ draws a candidate ρ∗ from a
candidate-generating function, here, a (truncated) normal distribution: at the i+1-th
iteration, ρ∗ is drawn from

ρ
∗ ∼N (ρi,c2)

in which ρi is the draw from the previous (i-th) iteration and c is a tuning parameter
that is used to adjust the acceptance rate of the MH algorithm. We then calculate
the ratio p(ρ∗)/p(ρ) in which p(·) is the kernel of the full conditional for ρ . If
the ratio is greater than 1, the candidate is accepted (that is, ρi+1 = ρ∗). If the
ratio is less than 1, however, the candidate is accepted with probability p(ρ∗)/p(ρ);
that is, we take an uniform (0,1) random number u and if u < p(ρ∗)/p(ρ), accept
the candidate and if u > p(ρ∗)/p(ρ), do not accept it, in the latter case leaving
ρi+1 = ρi). The set of draws behaves like the draws from the the full conditional
posterior distribution of ρ . This was the idea of Metropolis et al. (1953) which
revolutionized Bayesian inference.

In practice, we have used the natural logarithm of p(·) which includes the
log-determinant, ln |B|. Ord (1975) showed that | I−ρWn |= ∏

n
i=1(1−ρλi) with

λi being the i-th eigenvalue of the spatial weight matrix Wn of dimension n. It is
computationally efficient to use the fact that the eigenvalues of the block-diagonal
matrix Wn = diag(W1, · · · ,WT ) are those of the diagonal blocks W1, · · · ,WT . .
In our analysis, we specify vague priors for the hyperparameters; that is, θ 0 = 0,
M0 = 1−5I, h0 = 0, p0 = 0, v0 = 0, and s0 = 0.
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B Results from Initial Analysis
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Figure 5: Map of estimated and projected India city size, 2000 and 2050.
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