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Abstract 

The past decade has experienced growth in the investigation of heterogeneous associations with 

independent variables across the distribution of either the dependent variable or across 

geographic space. The former is implemented using quantile regression (QR), whereas the latter 

has been popularized by geographically weighted regression (GWR). Demographers have lagged 

other fields in adopting either of these methods. In this paper, we combine QR and GWR to 

create an innovative approach to simultaneously explore the heterogeneity embedded in both 

variables and space – an approach we name geographically weighted quantile regression 

(GWQR). The goal of this study is to introduce GWQR to demographers. We illustrate GWQR 

in two studies, the first using ecologic data (US county-level mortality) and the second using 

individual-level data (obesity in Philadelphia). Significant heterogeneities across space and the 

distributions of (a) mortality and (b) body mass index suggest that heterogeneity commonly 

exists and should be considered in model specification. 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 Most population studies seek to identify the associations between a dependent variable 

and a set of independent variables. From a statistical perspective, these associations should be 

regarded as random variables. The typical multivariate regression techniques, however, depict 

these associations using measures of central tendency (i.e., mean, median and mode) of the 

distribution of a dependent variable (Hao and Naiman 2007). Focusing on the mean value is 

arguably the most common approach to summarizing how a dependent variable responds to 

change in an independent variable (Kleinbaum et al. 2007). While the mean regression is able to 

provide a parsimonious picture of these associations of interest, in applications, its underlying 

assumptions, i.e., homogeneity and independence, are often violated, especially with social 

science and geospatial data (Cressie 1991; Hao and Naiman 2007). These analytical issues have 

been largely ignored in empirical studies and we suggest that the way to move forward is to 

explore two sources of heterogeneity in data – the statistical heterogeneity of a dependent 

variable and the spatial heterogeneity among observed units.    

 To better understand the concept of heterogeneity, it is imperative to first introduce its 

opposite, homogeneity. In statistics, homogeneity refers to the level of similarity in distributions 

and the definition of similarity ranges from a single attribute (e.g., variance or mean) to total 

sameness. For example, in ordinary least squares (OLS) regression, the residuals are assumed to 

have a homogeneous variance, which indicates the variance does not vary across subsamples 

(Sokal and Rohlf 1981). Extending homogeneity to a spatial context, the relationships of interest 

that do not vary with the spatial dimension can be described as homogeneous. For simplicity and 

convenience, both statistical and spatial homogeneity are widely assumed in most conventional 



analytic techniques and heterogeneity per se is ignored or regarded as an unwelcome 

complication (Kleinbaum et al. 2007; Pickett and Cadenasso 1995).  

 Heterogeneity can be defined as the lack of homogeneity. In other words, this is when the 

relationships between the mean of a dependent variable and a certain independent variable 

cannot be generalized to other locations along the distribution, especially when the data are 

skewed or distributed in the tails (Hao and Naiman 2007). The development of quantile 

regression (QR) has provided a method that examines how predictors are associated with a 

dependent variable (Koenker 2005; Koenker and Bassett 1978). More and more empirical studies 

are using QR to provide a nuanced insight into heterogeneity (Abrevaya and Dahl 2008; Austin 

et al. 2005; Han, Powell, and Pugach 2011). QR is preferable to traditional analytic approaches 

(e.g., OLS) due to its flexibility in dealing with non-normally distributed errors, robustness 

against outliers, and ability to detect heterogeneity (Koenker 2005). As of yet, few demographers 

have taken advantage of QR to tackle heterogeneity. For a recent exception please see Yang et al. 

(Forthcoming).  

 In the past decade, the resurgence of spatial demography can be attributed to the rapid 

growth in geospatial data and new spatial analytical methods (Anselin 1988b; Voss 2007). 

However, spatial econometrics models, most commonly used spatial analytic methods, assume 

that the associations between the independent and dependent variables are homogeneous across 

space; i.e., do not vary by location (Fotheringham 1997). Interest in the homogeneity assumption 

stimulated the development of geographically weighted regression (GWR), an exploratory 

method that investigates spatial heterogeneity, allows researchers to better understand the 

underlying spatial process between independent and dependent variables, and can be used to help 

refine model specification (Brunsdon, Fotheringham, and Charlton 1998b; Fischer et al. 2010; 



Foody 2003; Fotheringham, Brunsdon, and Charlton 2002; Wheeler 2007). To date, relatively 

few studies have employed GWR to address spatial heterogeneity in demography and health 

research (Chen et al. 2010; Partridge and Rickman 2007; Shoff, Yang, and Matthews 

Forthcoming; Yang et al. 2009).  

 In contrast to other disciplines such as forestry, geography, economics, and 

environmental science, demography has lagged in exploring the heterogeneity embedded in both 

variables (via QR) and/or space (via GWR). We argue that it is time for demographers to not 

only catch up with the trend that embraces statistical heterogeneity, but also in the examples we 

develop, consider spatial heterogeneity in demographic research.  

 This paper is organized as follows. First, we elaborate on the limitations of conventional 

regression approaches, model improvements offered by both QR and GWR, and discuss in more 

detail statistical and spatial heterogeneity. We then introduce a newly developed spatial analysis 

tool, geographically weighted quantile regression (GWQR). We provide two empirical examples 

to demonstrate the potential utility of GWQR. In the first example, we draw on an ecological 

study of county-level mortality across the US, and in the second example, we use an individual 

level study of obesity within a small area within Philadelphia. Next, the preliminary findings and 

lessons learned from the two empirical examples will be summarized. Finally, the paper will 

conclude with a discussion of future directions in methods to explore in demographic research. 

Literature Review 

Limitations of traditional regression approach 

 Linear regression is arguably the most popular analytic tool used to answer the question 

of how a dependent variable is associated with a set of predictors in health and population studies 

(Kleinbaum et al. 2007). There are, however, several well-know disadvantages of this analytic 



approach. For example, the independence assumption (i.e., data are randomly distributed) is 

often violated in ecologic studies (Cressie 1991), and the normality assumption (i.e., data follow 

the Gaussian distribution) also may not hold especially when a dependent variable has a heavy-

tailed distribution (Hao and Naiman 2007). Failing to meet these modeling assumptions may 

result in biased estimates and misleading conclusions. To address these issues, new statistical 

methods have been developed (see below).   

 Ecological social and health data have been found to be spatially dependent and the 

independence assumption has been challenged by Tobler’s first law of geography (Tobler 1970). 

Spatial dependence can be found in both dependent and independent variables as well as in 

model residuals. Spatial econometrics approach has been developed to handle these issues and 

has been widely used. In general, this approach takes spatial dependence into account by 

including a spatial lag effect of the dependent variable and/or a spatial error term in the residuals 

(LeSage and Pace 2009).  However, spatial econometric methods focused on spatial dependence 

and most other spatial models are designated to estimate a single, or global, regression equation 

based on spatial data where an underlying assumption is that the relationships between the 

independent and dependent variable are homogeneous (e.g., stationary) over space 

(Fotheringham 1997). 

 There are good reasons to question the homogeneity assumption in conventional spatial 

analysis (Brunsdon, Fotheringham, and Charlton 1998a; Fotheringham 1997).
 
First, random 

sampling variations will inevitably contribute to the observed spatial associations. While this 

source of spatial heterogeneity is not of interest for most researchers, it may complicate 

significance testing. Second, some relationships between the dependent and independent 

variables intrinsically vary across space. For instance, the spatial variations in individuals’ 



attitude toward the health care system (i.e. levels of distrust) may produce different responses to 

the health outcomes over space (Yang and Matthews 2012). The idea that human behaviors 

differ by places echoes the recent work on the impacts of locality and residential neighborhood 

environments on health (Diez Roux and Mair ; Macintyre, Ellaway, and Cummins 2002). Third, 

from a modeling perspective, global modeling may be a misspecification of reality and the 

variables included in the models may not be represented by the correct function form 

(Fotheringham 1997). A global model is useful, but the model specification is not sufficient to 

detect evidence of spatial heterogeneity (Fotheringham, Brunsdon, and Charlton 1997, 2002). 

 The traditional regression approaches concentrate on the measures of central tendency of 

the distribution of a dependent variable. This focus on central locations means that, at best, the 

results only can be presumed to be homogeneous across the dependent variable’s distribution. 

This feature may have inadvertently steered demographers, social, and health scientists away 

from questions relevant to non-central locations (Hao and Naiman 2007). For example, 

understanding the relationship between wage inequality and educational attainment in the tails of 

the wage distribution may be more helpful than models estimated for the central locations 

(Machado and Mata 2005). Similarly, the associations of maternal characteristics with birth 

weights should be more important in the low end (among low birth weight infants) than any 

other locations of the birth weight distribution (Abrevaya and Dahl 2008). The traditional 

approach inherently fails to characterize the relationship between a dependent variable’s 

distribution and predictors, and the question of how changes in predictors affect the shape of a 

dependent variable’s distribution remains unanswered (Koenker 2005).  

 While alternative approaches have been developed to overcome some methodological 

concerns (e.g., median regression to minimize the influence of heavy-tailed distribution), the QR 



approach, which focuses on the whole distribution of a dependent, has been popular in 

economics (Koenker 2000), but has only recently emerged in health and demographic research 

(Austin et al. 2005; Yang et al. Forthcoming). QR divides the whole distribution into quantiles 

and estimates the conditional quantiles as functions of explanatory variables. Quantile is a term 

that generalizes specific locations, such as quartile, quintile, decile, and percentile, and it can 

represent any predetermined locations of a distribution (Koenker and Bassett 1978). Since any 

quantiles can be modeled, researchers can choose any positions in a distribution to tailor specific 

research questions; thus, it becomes possible to generate a graphical profile of how a dependent 

variable’s distribution is affected by predictors.     

 While GWR and QR, respectively, address some of the limitations of the traditional 

regression approaches, and important shared featured of these two methods is the focus on the 

homogeneous assumption. GWR dissects the global spatial process into multiple local processes 

that are allowed to be heterogeneous across the research area and QR enables the examination of 

whether the associations between a dependent variable and predictors vary across a dependent 

variable’s distribution. Both spatial and statistical heterogeneities have been shown to generate 

new knowledge and inform place- and population-specific policies (Fotheringham, Brunsdon, 

and Charlton 2002; Hao and Naiman 2007).  

Heterogeneity  

  Statistical heterogeneity, heteroscedasticity, and non-stationarity 

 From a statistical viewpoint, Dutilleul and Legendre (1993) suggested that “there are as 

many definitions of heterogeneity as there are parameters for a statistical distribution, each of 

these definitions related to the object to which heterogeneity applies (p.155).” At its most simple, 

heterogeneity is the opposite of homogeneity. However, to better understand what statistical 



heterogeneity means, several terminologies derived from the concept of heterogeneity need to be 

clarified.  

 In the traditional regression modeling, heteroscedasticity refers to the equality of 

variances (Dutilleul and Legendre 1993; Glaser 1983; Sokal and Rohlf 1981), and has been 

found to be one consequence of heterogeneity. As heterogeneity may refer to the equality of 

more than one distributional feature, statisticians have expanded the concept of 

heteroscedasticity by taking the mean value of the variable of interest into account and proposed 

the idea of non-stationarity (Dutilleul and Legendre 1993). For a given statistical characteristic, 

the level of dissimilarity (similarity) between two samples may be used to define the level of 

heterogeneity (homogeneity).  

 By extension, statistical stationarity can be classified as strict, weak, and intrinsic 

stationarity (Banerjee, Carlin, and Gelfand 2004). Strict stationarity assumes that any changes in 

the observations would not affect the variance or mean values. Weak stationarity only requires 

that both the mean and variance remain constants regardless of the changes in data. Intrinsic 

stationarity stands as long as the changes in data follows a distribution with a zero mean and a 

finite variance (Banerjee, Carlin, and Gelfand 2004; Dutilleul and Legendre 1993; Lloyd 2011). 

The discussions above indicated that heterogeneity is the largest construct that covers both 

heteoscedasticity and non-stationarity. These two concepts are specific to certain distributional 

features and should be used carefully. While these definitions related to heterogeneity emerge 

from a statistical perspective, they have been used to define spatial stationairty in spatial data 

analysis (see next section). 

 Spatial heterogeneity and its significance 



 When applying heterogeneity to a spatial context, it is crucial to distinguish the 

geostatistical pattern from a spatially continuous process (Dutilleul and Legendre 1993). The 

former concerns the densities of points (observations) across space, whereas the latter represents 

the variability across sub-areas with respect to the relationships among variables. The 

geostatistical pattern process is interested in merely the locations of observations and defines 

spatial heterogeneity as the significant difference in density variations among sub-regions within 

an area. For example, whether the patients with a certain type of disease are observed randomly 

across space would be the major concern from the geostatistical aspect. Once the densities of 

patients (after taking population at risk into account) are found to be unevenly distributed in a 

given area, one could conclude that spatial heterogeneity is present (Dutilleul and Legendre 

1993). The Poisson process has been widely used in this paradigm to examine whether the spatial 

distributions of points are random and both spatial over- and under-dispersion could contribute to 

spatial heterogeneity (Lloyd 2011).   

 Spatial continuous surface process focuses on the relationships among the features that 

are attached to observations. Spatial heterogeneity refers to the situation that the observed values 

either for a given variable or among variables changes spatially, with some areas having greater 

(or smaller) values than others. A recent study, for example, demonstrated that the relationship 

between health care system distrust and self-rated health among the elderly varied significantly 

within the Philadelphia metropolitan area (Yang and Matthews 2012). Unlike the geostatistical 

process, the surface process has focused on whether there is a spatial pattern regarding the 

observed values of interest and what the pattern looks like (McIntosh 1991). More importantly, 

this type of spatial heterogeneity has been found to be subject to scale (i.e., measurement units), 

where a decrease (increase) in the geographical size of measurement unit may convert 



heterogeneity into homogeneity (homogeneity into heterogeneity). This issue calls for careful 

choices of analytic units, thoughtful interpretation of spatial heterogeneity, and a clear 

understanding of local spatial processes (Dutilleul and Legendre 1993).  

 The concept of statistical stationarity has been loosely applied to spatial analysis domain 

and should be further clarified. According to the earlier discussion, stationarity refers to the 

situation that any changes in the data would not change certain distributional features of interest. 

Cressie (1991) define “changes in the data” as the change in the locations of observations to 

explore spatial stationarity in spatial point modeling. However, by contrast, Brunsdon and 

colleagues (Brunsdon, Fotheringham, and Charlton 1998a; Brunsdon, Fotheringham, and 

Charlton 1998b) described spatial stationarity as a phenomenon where the associations between 

dependent and independent variables do not change by geographical locations. There is no 

agreement on which definition is correct but it seems that the former closely mirrors the concept 

of statistical stationarity and the latter better fits the concept of heterogeneity in spatial 

continuous process.    

 How does spatial heterogeneity inform demographic and health research? At its most 

basic, we are challenging the conventional assumption that the same stimulus promotes the same 

response. We believe this to be so for several reasons. First, heterogeneity should be regarded as 

an inherent feature of a society (Dutilleul and Legendre 1993). Many social characteristics are 

unevenly distributed and people are engaged in different geographic scales that affect spatial 

heterogeneity (Matthews 2011). Indeed, it is naïve to assume that the relationships of interest are 

constant everywhere (Lloyd 2011). Second, spatial heterogeneity may reflect the population 

dynamics with the natural and/or social environment that have not been considered by 

researchers. This unobserved association may result in heterogeneous relationships across 



regions and encourage scholars to think with a local perspective and locate areas that need 

special attention (Anselin 1988a; Dutilleul and Legendre 1993). Finally, the spatial pattern 

generated by heterogeneity provides valuable information to those researchers attempting to 

identify factors that are predictive of the spatial pattern (Fotheringham, Brunsdon, and Charlton 

2002; Lloyd 2011). This focus on spatial heterogeneity echoes a re-emergent interest in spatial 

inequality (Lobao, Hooks, and Tickamyer 2007).  

Putting heterogeneities together 

 The discussion above suggests that to a certain degree heterogeneity is a product of the 

perspective and analytical decisions of the researcher. In this paper, we are focused on the 

associations between a dependent variable across the statistical distribution and across 

geographic space. Currently, QR and GWR are two methods that are based on the non-

parametric estimation approach and designated to separately explore statistical and spatial 

heterogeneities (Fotheringham, Brunsdon, and Charlton 2002; Koenker 2005). Only recently 

have researchers considered statistical and spatial heterogeneity within the same methodological 

framework (Chen et al. 2012; Reich, Fuentes, and Dunson 2011).  

 GWQR has been developed by integrating QR with GWR, creating a synergy that makes 

it possible to simultaneously account for the heterogeneities across space and the distribution of a 

dependent variable (Chen et al. 2012). The novel analytic approach allows researchers to dissect 

the global processes into local processes and investigate whether and how the relationships of 

predictors with the dependent variable differ across the distribution of the dependent variable. 

The original paper (Chen et al. 2012) covers the technical explanations in more detail than space 

permits here.   

Methodology – Non-parametric GWQR Framework 



 The GWQR framework is built upon the GWR approach and we are thus focused on 

GWR  and refers readers elsewhere for the details of QR (Hao and Naiman 2007). Following 

Fotheringham and colleagues (2002), a Gaussian GWR model can be expressed as: 
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where K is a kernel function and h is the bandwidth, which controls the smoothness of the 
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 The GWQR extends equation (1) by incorporating the features of QR into the response 
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 In contrast to the original GWR equation (1), the parameter estimates of GWQR,
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Koenker 2005). Employing the same approach described here, the estimates ),(ˆ
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have developed a series of macro programs in SAS to implement the GWQR analysis and these 

programming codes are available upon request. 

Examples  

 In the remainder of this paper we seek to go beyond the original methodological paper 

with a more explicit focus on two quite different empirical applications, which vary on sample 

sizes (from 377 to 3072), for different types of analytical units (ecologic and individual), and for 

study areas ranging from just a few square miles (inner city Philadelphia) up to the nation (lower 

48 states). These empirical demonstrations serve to show the versatility of GWQR and its 



applicability to demographic and health research. We briefly describe the data and offer basic 

descriptive statistics below: 

 Case 1 – A study of US County-level Mortality: We used the latest Compressed Mortality 

Files (CMF) maintained by the National Center for Health Statistics (NCHS) and calculated the 

2004-2008 five year average mortality rates as the dependent variable for the contiguous US 

counties (N=3,072) (NCHS 2011). The average mortality rates were standardized with the 2006 

US age-sex population structure. The independent variables include the deprivation index 

(Townsend, Phillimore, and Beattie 1988), poverty rates, and metropolitan status. The 

deprivation index was developed for health disparity research and comprised the following four 

variables: percent of economically active people unemployed (X1), percent of households with 

more than one person per room (X2), percent of household without vehicles (X3), and percent of 

housing units that are renter-occupied (X4). To obtain the deprivation index, these variables need 

to be transformed and standardized as follows (Townsend, Phillimore, and Beattie 1988): let 

D1=log(X1+1), D2=log(X2+1), D3=X3, and D4=X4. These variables were then standardized 

into z-scores and in the final step summed into a single deprivation index. Counties with larger 

values on the deprivation index could be interpreted as more deprived areas. Poverty rates are 

defined as the proportion of individuals whose income level is below poverty line. Metropolitan 

counties (coded 1) include those counties that have one or more urbanized areas with more than 

50,000 residents and those counties with a total urbanized area of 100,000 population and 

contiguous counties with strong economic ties. The data for the independent variables were 

derived from the American Community Survey (ACS) 2005-2009 5-year estimates (US Census 

Bureau 2010). The distributions of these variables were summarized in Table 1 (Panel A). 

[Table 1 here] 



 Case II –A Study of Body Mass Index (BMI) in African American Women in 

Philadelphia: The Neighborhood Food Environment, Diet, and Health Study is a multi-wave 

project investigating the role of the built environments on dietary habits. Two neighborhoods, 

one intervention and one comparison, were matched by baseline retail structure, median income, 

and racial/ethnic composition. For this empirical example, we focus on the 377 African 

American women living in the intervention site at baseline. The dependent variable is the 

women’s BMI calculated from self-reported height and weight. Four independent variables are 

included in the analysis. Self-rated health is a five scale ordinal measure ranging from 1 

(excellent) to 5 (poor). Age is treated as a continuous variable. Individual income was classified 

into 12 ordered groups where 1 indicates an annual income less than $5,000 and 12 represents an 

income greater than $100,000. The fourth and final variable used in this simple example is the 

distance from a woman’s home to the store where she purchased fruit and vegetables. Table 1 

(Panel B) provides the descriptive statistics of these variables.   

GWQR Results 

 Since GWQR is able to estimate the relationships between a dependent variable and 

predictors at any quantiles of a dependent variable’s distribution, the analysis can generate 

abundant information for each observation at each quantile. Following Fotheringham et al. 

(2002) for GWR and Koenker (2005) for QR, we reproduce output focusing on the five-number 

summary statistics to illustrate the variations in local estimates at the following selected 

quantiles: 5
th

, 25
th

, 50
th

, 75
th

, and 95
th

. Moreover, to better interpret spatial heterogeneity, we 

visualized spatial patterns with mapping approach developed by Matthew and Yang (2012). 

Given the space constraint and the goal of our analysis, our discussions are brief and we limit the 



mapping to just one key independent variable in each example. The detailed GWQR analytic 

results are available upon request. 

Case I: Mortality     

 Table 2 presents the results for the US mortality example. We reported the results at five 

different quantiles. At each quantile and for each independent variable, the five summary 

statistics are listed to demonstrate the distribution of the estimated local associations with 

mortality, which helps us to compare the results across space and quantiles. Several findings 

were notable. First, the bandwidths utilized in our model tend to be larger toward the upper and 

lower ends of the county-level mortality distribution, and the bandwidths appear to be relatively 

symmetrical across percentiles centered on the 50
th

 percentile. This bandwidth pattern may 

reflect the fact that the mortality rates were concentrated around the mean value, as revealed by 

the low standard deviation (see Table 1, Panel A). In such a case GWQR needs to draw on more 

observations (i.e., counties) in the kernel density function for reliable estimations at the 

extremes. Second, the largest bandwidth in Table 2 was 694, which is roughly 23 percent of the 

total observations (3,072). The low proportion indicates that the spatial processes between 

mortality and the independent variables, in our example, are fairly local. This implies that the 

traditional global regression approach is a misspecification. Third, using a conventional method 

that compares interquartile ranges with global standard errors (Fotheringham, Brunsdon, and 

Charlton 2002), spatial heterogeneity is identified at each quantile, which may suggest that 

spatial heterogeneity is not a rare phenomenon, at least, in mortality research. Fourth, comparing 

the local estimates across quantiles, we also found that the relationships of mortality with the 

explanatory variables were heterogeneous. For example, the association between the deprivation 

index and mortality tended to be stronger around the 25
th

 and 75
th

 percentile than in any other 



percentiles, and the relationship of poverty with mortality steadily increases from the low to the 

high end of the mortality distribution. 

[Table 2 Here] 

 Figure 1 demonstrates the heterogeneous associations between the deprivation index and 

mortality across quantiles. The colored areas are the areas where the associations are statistically 

significant at the p<0.05 level. One consistent pattern across models is that the northern Great 

Plains (e.g., North and South Dakota, Montana, and Wyoming) are subject to the impact of 

deprivation. In those counties, high deprivation index is associated with high mortality. The 

positive association between deprivation and mortality seems to hold along the Mississippi 

River, especially between the 25
th

 and 75
th

 percentile. By contrast, an unexpected (negative) 

relationship between deprivation and mortality was found in the New England area and the 

US/Mexico border. One plausible explanation for this finding may be related to the Hispanic 

Paradox, a phenomenon that Hispanic population experience low mortality despite their 

relatively low socioeconomic status. It should be noted that in this example, we did not include 

other important variables (e.g., racial composition) in the analysis and thus results could change 

with the inclusion of new independent variables. As expected, the relationship between 

deprivation and mortality was heterogeneous and, based on this simple model, deprivation may 

not be a major determinant of mortality in most of the US.  

[Figure 1 Here] 

Case II: BMI in Philadelphia  

 The second empirical example draws on individual-level data collected in a low-income, 

predominantly African American neighborhood. GWQR was used to explore heterogeneity in 

BMI in 377 African American women and the results were presented in Table 3. Before 



describing the results we again note that the bandwidths utilized in GWQR are larger toward the 

upper and lower ends of the BMI distribution. We note that the bandwidth at the 50
th

 percentile 

draws on 78 percent of the sample, while at the 75
th

 percentile and 95
th

 percentiles 95 percent 

and 84 percent of the sample are used in estimating the weighted local models. These are much 

larger percentages than in the mortality example, but such high levels are not unusual in GWR 

applications (Fotheringham, Brunsdon, and Charlton 2002).  From Table 1 (Panel B) we know 

that mean BMI values are high (30, see Table 1) and that the range of reported values is quite 

wide (we did not remove extreme values as QR and GWQR are robust in handling outliers). On 

closer examination of BMI the variance-to-mean ratio (1.717) implies that the variable is over-

dispersed, possibly due to the presence of clusters of data values.  

[Table 3 Here] 

 Comparing the interquartile ranges with global standard errors (Table 3) confirms the 

presence of spatial heterogeneity but the patterning across quantiles varies by predictor.  Self-

rated health reveals spatial heterogeneity for all but one of the quantiles (the 25
th

 percentile). The 

GWQR facilitates the comparison of relationships between BMI and the predictors across 

quantiles; again not surprisingly there is variation and even some switching of sign. For example, 

focusing on the median values of the distributions of local coefficients, the relationship between 

BMI and self-rated health is relatively small and negative (median = -0.076) in the lowest 

quantile (5
th

) but much larger at the 50
th

 quantile and above (ranging between 1.517 to -2.485). 

Distance to the fruit and vegetable store has a positive association at with BMI in the lowest 

quantiles but the relationship is negative at and above the 25
th

 quantile.  

 Figure 2 illustrates how the association between self-rated health and BMI varies across 

quantiles and the study area. From Table 3, we know that the association between BMI and self-



rated health was stable at the 25
th

 quantile but otherwise was spatially heterogeneous. The map 

for the 25 quantile reveals a varying spatial pattern for the coefficient for self-rated health but 

overall the variation in the relationship at that quantile does not significantly differ from the 

global modeling and hence homogeneous. The most dominant pattern across the quantile maps is 

the high positive coefficient in the north-east part of the study area across most quantiles. This 

persistent pattern could be understood as follows. One is that a large grocery store is just outside 

the significant area and the respondents in that quadrant are closer than any others in the study 

area, which contributes to the spatial pattern. The other is that this example only focused on 

African American but the significant area also has high concentration of Hispanic population. 

Our GWQR result may imply the community-level influence that is not included in the analysis. 

[Figure 2 Here] 

 While this example did not identify spatial heterogeneity to be as serious as in the 

mortality case, it is none the less an appropriate application of GWQR as knowledge of the lack 

of spatial heterogeneity is also important. Indeed, from a policy or intervention standpoint 

knowing what is spatially homogenous may be as important as knowing what is spatially 

heterogeneous.  In the BMI case, the association with self-rated health is spatially heterogeneous, 

and to a lesser extent so is the association with distance but for age and income the relationships 

to BMI are relatively stable across the study area. By contrast, the mortality case suggested that 

heterogeneities deserve further consideration to explain the residential mortality disparity.   

Discussions and Conclusions 

 Statistical heterogeneity has been found to frequently occur when data are not normally 

distributed and it may provide detailed information relevant to questions across the range of a 

variable’s distribution (e.g., BMI and mortality). In the case of mortality, revealing the 



statistically heterogeneous associations can help demographers answer questions regarding the 

geographical mortality differentials and better focus on the factors that may reduce mortality for 

specific mortality groups (e.g., the highest quartile). The GWQR analysis offered strong 

evidence challenging a global model perspective and suggested that the one-model-fits-all 

approach sacrifices the opportunities to identify spatial heterogeneity and uncover new 

knowledge. For example, without the GWQR approach, the finding of a negative relationship 

between the deprivation index and mortality in New England and along the US/Mexico border 

would not be clearly identified.   

 While the two empirical examples differed in terms of the sample size, the geographical 

unit (county/individual), the distances between observations and their elative densities, and the 

size of the study areas (the contiguous US/20 census tracts), we identified spatial heterogeneity 

in both studies. Spatial heterogeneity may not be as rare as we might think in demographic and 

health studies and the homogeneous assumption regarding spatial processes may need to be 

revisited (Fotheringham, Brunsdon, and Charlton 2002).          

 One goal of this manuscript is to complement the original GWQR methodology paper 

and verify the applicability of this new method in different areas of demography. In our first 

example, we parallel the mortality application of Chen et al. (2012) using updated mortality data 

and a new set of explanatory variables drawn from the ACS. Both spatial and statistical 

heterogeneity were found in the new models. This indicates that the spatial heterogeneity found 

by Chen et al (2012) cannot be attributed to data selection bias. One point we would like to 

emphasize is that spatial heterogeneity appears to commonly exist in social indicators. In our 

mortality example, the deprivation index, poverty and metropolitan status all showed 

heterogeneous relationships with mortality (maps are available upon request). In addition, in our 



second empirical example, we demonstrated the application of GWQR to an analysis of 

individual-level BMI, in a very differently scaled and geographically bounded study, on a 

smaller sample size. The BMI results indicated that even within a small bounded research area 

spatial heterogeneity may still exist and may provide insights in future analysis (e.g., the 

community-level racial composition). While relative to the overall analytic units, the bandwidths 

in the BMI study were large, the local spatial processes continue to play an important role in 

understanding why some variables (e.g., self-rated health) are more important in certain areas of 

the map. Our examples strongly provide evidence to support the applicability of GWQR.     

 Though the value of GWQR has been validated, several issues warrant attention. First, 

given the relatively large bandwidths found in the BMI analysis and the complexity of GWQR, 

we currently recommend that this new method may be more reliable on samples of 350 or more 

observations. GWQR needs to collect enough data points to estimate local models, especially at 

the extremes of a distribution. This issue deserves further research and drawing on the 

experience of others with GWR, this topic may be best explored using a simulation-based 

approach, rather than with empirical, data (Paez 2005; Paez, Farber, and Wheeler 2011). Second, 

while the literature indicated that heterogeneity is a product of the researchers’ perspective 

(Dutilleul and Legendre 1993; Li and Reynolds 1995), a single indicator that simultaneously 

tests both statistical and spatial heterogeneity should be developed. Third, the current GWQR 

approach is limited to a fully non-parametric approach, but we hope to develop a bootstrapping 

framework to tackle several technical issues raised in the original GWQR paper, such as 

multicollinearity and statistical testing (Chen et al. 2012; Davison and Hinkley 1997). Finally, 

while using the five summary statistics and visualizing spatial heterogeneity are appropriate 

techniques to demonstrate the massive amount of information generated by GWQR, how to fully 



utilize the results to simultaneously present both statistical and spatial heterogeneity remains a 

challenge. 

 In sum, the well-known limitations of the traditional regression approach have sparked 

the development of GWR and QR. New analytic methods and recent growth in local modeling 

approaches reinforced the need to focus on issues of heterogeneity (Fotheringham, Brunsdon, 

and Charlton 2002; Hao and Naiman 2007). In this paper, we have discussed the definitions of 

statistical and spatial heterogeneity, elaborated on their significance and potential benefits, and 

offered two empirical examples to support the value and applicability of GWQR in demographic 

and health research. Demography and health science have a long history of investigating 

population dynamics and space (Cromley and McLafferty 2011; Goovaerts 2008; Voss 2007; 

Young and Gotway 2010), and we believe a focus on heterogeneities will help move these fields 

forward.      
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Table 1. Descriptive statistics for variables in examples 

Variables Minimum Maximum Mean Std. 

Deviation 

Panel A     

US Mortality Example (N=3,072)     

Age-sex Adjusted Mortality  

(per 1,000 population) 

0.000 18.889 8.908 1.462 

Deprivation Index -5.118 21.785 -0.301 2.327 

Poverty Rates 0.000 0.524 0.154 0.065 

Metropolitan Status 0.000 1.000 0.345 0.475 

     

Panel B     

Philadelphia Obesity Example (N=377)     

Body Mass Index (BMI) 13.705 68.652 30.110 7.191 

Self-rated Health (1=excellent, 5=poor) 1.000 5.000 3.077 1.070 

Age (continuous) 18.000 90.000 47.698 17.279 

Income Level (ordinal) 1.000 12.000 4.769 2.961 

Distance to Fruit and Vegetable Store (in miles) 0.063 32.117 2.207 2.096 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. GWQR results for US mortality example at selected quantiles 

 Minimum Q1 Median Q3 Maximum S.E.
‡ 

Heterogeneous
† 

Q=0.05 (bandwidth=694)        

Intercept 1.780 6.180 6.700 7.290 8.750 0.244 Yes 

Deprivation Index -0.338 -0.043 0.016 0.097 0.467 0.020 Yes 

Poverty Rates -8.430 1.785 5.504 9.008 18.710 1.585 Yes 

Metropolitan Status -1.540 -0.255 -0.048 0.280 2.560 0.127 Yes 

Q=0.25 (bandwidth=394)      

  Intercept 4.550 6.888 7.527 8.015 9.600 0.131 Yes 

Deprivation Index -0.247 -0.014 0.043 0.103 0.466 0.023 Yes 

Poverty Rates -11.950 2.972 7.048 9.428 28.090 0.741 Yes 

Metropolitan Status -1.050 -0.214 -0.642 0.074 0.850 0.067 Yes 

Q=0.50 (bandwidth=301)      

  Intercept 4.710 7.384 7.861 8.335 10.401 0.126 Yes 

Deprivation Index -0.240 -0.028 0.027 0.099 0.442 0.024 Yes 

Poverty Rates -9.310 3.967 7.436 10.786 26.000 0.776 Yes 

Metropolitan Status -1.480 -0.234 -0.068 0.064 -0.068 0.053 Yes 

Q=0.75 (bandwidth=412)      

  Intercept 4.340 7.513 8.211 8.773 10.610 0.125 Yes 

Deprivation Index -0.390 -0.329 0.041 0.114 0.389 0.022 Yes 

Poverty Rates -7.020 5.181 8.668 12.633 28.080 0.731 Yes 

Metropolitan Status -1.430 -0.257 -0.006 0.135 1.050 0.051 Yes 

Q=0.95 (bandwidth=630)      

  Intercept 4.380 8.198 8.885 9.902 13.240 0.224 Yes 

Deprivation Index -0.404 -0.052 0.018 0.105 0.472 0.042 Yes 

Poverty Rates -7.130 5.769 10.388 13.213 30.340 1.307 Yes 

Metropolitan Status -4.120 -0.433 -0.076 0.129 1.440 0.099 Yes 
†Heterogeneity is observed if the interquartile range (Q3-Q1) is at least two times greater than the S.E. 

‡Standard errors from the global quantile regression. 

  

 

 

 



Table 3. GWQR results for Philadelphia obesity sample at selected quantiles 

 Minimum Q1 Median Q3 Maximum S.E.
‡ 

Heterogeneous
† 

Q=0.05 (bandwidth=346)        

Intercept -0.919 16.378 20.245 22.996 43.006 1.585 Yes 

Self-rated Health -1.955 -0.730 -0.076 0.757 5.362 0.395 Yes 

Age -0.292 -0.009 0.011 0.045 0.130 0.023 Yes 

Income Level -1.407 -0.189 -0.037 0.177 0.414 0.133 Yes 

Distance -2.412 -0.028 0.215 0.714 1.703 0.211 Yes 

Q=0.25 (bandwidth=346)      

  Intercept 14.273 21.234 22.639 23.785 28.974 1.401 No 

Self-rated Health -0.391 0.535 0.707 0.955 3.028 0.299 No 

Age -0.065 -0.015 0.013 0.028 0.073 0.019 Yes 

Income Level -1.190 -0.176 -0.020 0.092 0.849 0.145 No 

Distance -0.270 -0.061 -0.029 0.042 0.221 0.149 No 

Q=0.50 (bandwidth=295)      

  Intercept 13.675 21.230 23.930 26.532 33.132 2.733 No 

Self-rated Health -0.740 0.706 1.517 1.800 4.667 0.510 Yes 

Age -0.131 -0.009 0.019 0.041 0.227 0.027 No 

Income Level -0.853 -0.156 -0.061 0.024 0.475 0.182 No 

Distance -0.583 -0.178 -0.038 0.469 2.896 0.272 Yes 

Q=0.75 (bandwidth=363)      

  Intercept 13.206 23.267 27.006 29.486 37.789 1.808 Yes 

Self-rated Health 0.883 1.872 2.485 3.108 5.517 0.445 Yes 

Age -0.108 -0.025 -0.005 0.018 0.068 0.022 No 

Income Level -0.805 -0.163 -0.080 -0.009 0.993 0.177 No 

Distance -1.404 -0.344 -0.137 0.394 2.303 0.274 Yes 

Q=0.95 (bandwidth=320)      

  Intercept 24.127 33.173 35.025 41.934 51.167 4.586 No 

Self-rated Health -1.826 0.222 1.933 3.075 4.360 1.028 Yes 

Age -0.167 -0.084 -0.040 -0.012 0.128 0.060 No 

Income Level -0.640 0.214 0.589 1.114 2.307 0.576 No 

Distance -2.408 -0.592 -0.170 0.623 3.445 1.217 No 
†Heterogeneity is observed if the interquartile range (Q3-Q1) is at least two times greater than the S.E. 
‡Standard errors from the global quantile regression. 
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Figure 1. Heterogeneous associations between the deprivation index and mortality by quantiles 
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Figure 2. Heterogeneous associations between self-rated health and BMI by quantiles 

 


