
1 
 

PAA 2012 submission for presentation (or poster) 
 
 
Title:  Age-specific Proportion of Shifted Deaths and the Tempo Effect in Period  
   Mortality 
 
Author: Christian Wegner 
  Vienna Institute of Demography, Austrian Academy of Sciences 
 
 
Short abstract 
 
Tempo effects remain a controversial but also very interesting topic in mortality research. 
Although the existence and the origin of tempo effects are theoretically easy to prove, the 
methods and their need for tempo adjustment are still highly controversial. In this paper I 
present a method for deriving the age-specific proportions of shifted deaths. These 
proportions contain the period flow of deaths which were rescued due to the period mortality 
conditions. According to the logic of Bongaarts and Feeny, these saved deaths cause a tempo 
distortion in conventional period life expectancy. By using the age-specific proportions of 
shifted deaths, it is possible to reformulate the different methods for tempo-adjusted life 
expectancy without the assumption of a proportional change in period mortality. The 
empirical application presents that the reformulated tempo-adjusted life expectancy reflects 
more precisely the changes in period mortality conditions than the conventional life 
expectancy. 
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1. Introduction 

 

The controversial topic of tempo effects in period mortality has been mainly deal with the 

question whether tempo effects distort period mortality indicator such as life expectancy 

(Bongaarts and Feeney 2002; Vaupel 2002; Bongaarts and Feeney 2008; Guillot 2008; 

Wachter 2008; Luy and Wegner 2009; Bongaarts and Feeney 2010). Only few publications 

show the unexpected phenomenon that the trend in period death rates fluctuates despite a 

continuous improvement in survival conditions of cohorts living during the analysed period 

(Horiuchi 2008; Luy and Wegner 2009; Feeney 2010). According to the logic of Bongaarts 

and Feeney (2002; 2008; 2008), these fluctuations are caused by tempo effects. They are 

accompanied by a temporary change in the number of deaths within a period in which 

mortality conditions have changed. This temporary change in the number of deaths is caused 

by those deaths which are shifted to higher or younger ages due to the improvement or 

worsening of survival conditions. 

But the number of shifted deaths has to be considered in the period mortality analysis beside 

the observed period stock of deaths. Otherwise the derived period mortality indicators are 

distorted by tempo effects. Bongaarts and Feeney (2002; 2008; 2008) proposed several 

methods to adjust the period life expectancy for tempo effects. The main assumption of these 

methods is that the proportion of shifted deaths is constant over age. Under this 

proportionality assumption, all methods lead to the same tempo-adjusted life expectancy. A 

proportional change in mortality provides however a mortality scenario in which the tempo-

adjusted indicators can also be interpreted as the average of last period life expectancies or as 

an estimation of the cohort life expectancy (Wilmoth 2005; Guillot 2008; Wachter 2008).  

This paper presents in the first part a method for deriving the age-specific proportion of 

shifted deaths without any assumptions. This proportion is helpful to understand the 

consequence of changes in period mortality and the resulting postponmend of deaths. The 

empirical application of estimating the age-specific shift of deaths among Swedish men 

presents that the conventional life expectancy leads to an unexpected description of the real 

mortality conditions. In the second part, we apply the age-specific proportions of deaths to 

reformulate the existed methods for tempo-adjusted life expectancy. It can be shown that all 

methods are similar when we consider the age-specific amount of shifted deaths. Furthermore, 

the trend of the tempo-adjusted life expectancy presents a better reflection of the period 

mortality conditions. 
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2. Age-specific proportion of shifted deaths 

 

The initial point for deriving the age-specific proportion of shifted deaths is the period 

intensity of mortality. Mortality intensity is based on age-specific death rates of the 2nd kind1. 

This kind of rate provides the ratio between the age-specific number of deaths and all 

individuals whether they have or have not experienced this event (Sardon 1994, p.132). 

According to Bongaarts and Feeney, the death rate 2nd kind i(x,t) is defined as2: 
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While this rate is often applied in fertility or nuptiality analysis, it is very uncommon to use it 

in mortality analysis. There are two main reasons. First, age-specific death rates of 1st kind 

are mainly applied in standard method of mortality analysis (e.g. life table method). This rate 

provides the ratio between the number of events and the number of person-years under 

mortality risk. In contrast to the rate of the 2nd kind, the denominator of the 1st kind rate 

includes only survived persons who are exposed to mortality risk. The other reason is the need 

of detailed data. The second term in Eq. 1 includes cohort data to estimate the birth 

standardised number of person-years. Therefore, the number of births, of deaths and detailed 

data of migration flows of at least 100 cohorts living during the analysed period are necessary 

to evaluate the birth standardised number of person years at each age during a period.  

 

The sum of all age-specific incidence rates (death rates 2nd kind) provides the intensity of 

mortality. In the cohort perspective the intensity is always one because every individual have 

to die once in their life. The mortality intensity of a cohort (cohort mortality rate CMR(c)) is 

defined as: 
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1 Also known as incidence rate, reduce rate or frequencies 
2 All further formulas are expressed in discrete form. The discrete approach is mathematically undemanding but 
it is sufficient to derive the following relationships.  
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The period intensity (total mortality rate TMR(t)) is the sum of all age-specific incidence rates 

in a particular period t: 
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The interpretation of the TMR seems similar to other intensity measure like the total fertility 

rate. Thus, the TMR reflects the average number of events per newborn even if the incidence 

rates are constant over their life time. The expected value therefore must be one. But the TMR 

varies from one even if period mortality conditions have changed. The TMR is lower than one 

when survival conditions are improving or it is higher than one when mortality increases 

within a certain period. Figure 1 presents the trend in the TMR among Swedish men from 

1851 to 2007.  

 

Figure 1 Trend of the total mortality rate (TMR) among Swedish men from 1851-2007 
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Source: Human Mortality Database, own calculation 

 

Except of two periods3, the TMR is always lower from the expected value of one and, 

therefore, indicates a steady improvement of the period survival conditions. Since 1851 the 

TMR has decreased to the lowest value of 0.64 at 1953. This continuous reduction was mainly 

                                                 
3 The first peak around 1856 was caused by starvation whilst the higher TMR at 1918 was caused by the Spanish 
flu epidemic. 
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caused by receding pandemics in the first half of the 20th century. After the 1950s the TMR 

increased to 0.76 during 1985 as a consequence of the increased smoking attributable 

mortality (Peto, Lopez et al. 2006). Since 1990 the TMR has again increased steadily to the 

current value of 0.72.  

 

The divergence of the TMR from the expected value one requires rather a technical definition 

of the total mortality rate than a interpretation as a quantum indicator. Guillot (2008, p.132) 

proposed that the TMR presents “the proportion of cohort deaths that are occurring during the 

period t”. Based on this definition, a TMR lower from one indicates the observed stock of 

deaths from all cohorts during the period t. On the other side, the difference of the TMR from 

one can be characterised as the flow of deaths which has not occurred during the analysed 

period. The flow of deaths, therefore, may be characterised as the shift of deaths due to the 

improvement or worsening of period survival conditions. 

 

The proportion of shifted deaths during a period S(t) may be formulated by the difference of 

the TMR from one: 

 (4) )()(1 tStTMR =−   

 

Similar to the TMR, it is assumed that the total proportion of shifted deaths may be 

decomposed by the age-specific proportions of shifted deaths s(x,t): 
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A simple population model with constant births and no migration (Figure 2) will help to prove 

the assumption of Eq. 5 and to derive the age-specific proportion of shifted deaths. During the 

year t, five deaths (framed in Figure 2) occur at age x. In comparison to the previous year t-1 

the number of deaths is reduced by one rescued death. But the number of shifted deaths at age 

x increases when considering the mortality history of both cohorts c and c-1 living during the 

analysed period (diagonal line). At age zero, the deaths of cohort c were reduced by five 

deaths compared to the previous cohort c-1. Thus, five infants could shift their deaths due to 

the reduction of the infant mortality. During the next age group, the number of deaths was 
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equal between both cohorts. But the rescued infant deaths were shifted further to higher ages4. 

In the next age group, two deaths were postponed in comparison to the previous cohort.  

 

Figure 2 Population model with constant birth and no migration to illustrate the extent of 
shifted deaths 
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Source: own design 

 

Together with the five saved deaths from age zero, the number of shifted deaths increases to 

seven at the beginning of the year t. The survival conditions within year t lead to a further 

postponement of the seven earlier saved death plus the additional rescued death at age x. This 

procedure can repeat for cohorts living during the analysed period. Thus, the current period 

conditions within in year t reduces firstly the number of deaths at age x and allows secondly 

the further flow of earlier rescued deaths. 

 

We can formulate the age-specific proportion of shifted deaths at age x during the period t by 

the sum of all previous differences in the incidence rates between the previous and the current 

cohorts:  
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4 Theoretically, the rescued infant deaths could occurred at age 1. In this case, five deaths of age 1 were shifted 
into higher ages. 



7 
 

The solution of Eq. 5 by using Eq. 6a leads to the difference of the TMR from one (see 

Appendix 1). Thus, the age-specific proportion of shifted deaths within a period t includes 

earlier shifted death of the birth cohort t-x and the rescued deaths of the current period at  

age x. Another way to derive the age-specific proportion is possible by using the number of 

individuals who survived to the next period. The difference of the remaining survivors from 

the initial number of birth of the cohort t-x equals the sum of all age-specific deaths which 

have occurred during this cohort:  
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The age-specific proportions of shifted deaths have several characteristics for mortality 

analysis. First, the proportion is a period indicator although it combines current shifted deaths 

as well as previous saved deaths of the cohort living during the analysed period. The reason is 

that only the period mortality conditions enable the further shift of earlier rescued deaths to 

higher ages beside the decrease or increase in observed number of deaths. However, the 

proportion of shifted deaths may be lower than the proportion of observed deaths. This is the 

case when earlier cohort mortality conditions were higher compared to the previous cohort. 

For illustrating this scenario, we increase the infant deaths of cohort c to 120 deaths in Figure 

2 while all other age groups remain their mortality level. The number of shifted deaths at age 

x decreases to -17 deaths caused by the increase of the infant mortality. The negative value 

indicates that deaths from higher ages are pre-shifted to younger age groups compared to the 

previous cohort c-1. Despite the negative value of shifted deaths, their proportion remains a 

period indicator. It indicates only the number of shifted deaths of a cohort during the period t. 

Moreover, the proportion do not present the age at which the shifted deaths will be occurring 

in the case of previous saved deaths or have occurred in case of pre-shifted deaths.   
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The second characteristic of the proportion allows a detailed analysis of period mortality 

change. Figure 3 shows the age-decomposition of the proportion of shifted deaths among 

Swedish men from 1851 to 2007.  

 

Figure 3 Trend of age-specific proportions of shifted deaths and the period life expectancy 
among Swedish men from 1851-2007 
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Source: Human Mortality Database, own calculation 

 

The last half of the 19th century is characterised by a fluctuation of all age-specific 

proportions of shifted deaths. At the beginning of the 20th century, the proportion of shifted 

death among younger ages (below age 30) started to increase what was mainly caused by the 

reduction of the infant mortality. The Spanish flu epidemic at 1918 reduced extremely the 

proportion of shifted death. Only the age groups 50-59 and the oldest age groups 80+ could 

significantly postpone deaths. After the shock, the survival conditions among younger ages 

began again to improve. While the proportion of shifted deaths among younger age groups 

was reduced continuously during the forthcoming periods, the middle age groups (age 30 to 

59) have experienced a significant mortality reduction since 1950. This improved survival 

conditions were characterised by the increased proportions of postponed deaths due to the 

antibiotic treatment. But the proportion of shifted deaths among the middle ages decreased 

significantly during the 1970s. This trend was mainly driven by the increase of smoking 

attributable mortality and other ‘man-made’ diseases. At the same moment, the highest age 

groups (person aged 70 or older) started to experience the improvement of their survival 
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conditions. These age groups influence mainly the recent trend of the TMR. Because of the 

continuous increasing of shifted deaths, the TMR has followed a decrease trend since 1985. 

 

Figure 3 includes also the trend of the period life expectancy. The comparison shows that the 

trend of the period life expectancy only partly reflects the trend of the postponed deaths. 

There are two significant examples to illustrate the differences between both indicators. The 

period life expectancy at 1918 decreased rapidly as a consequence of the Spanish flu 

epidemic. However, the age decomposition of the shifted deaths indicates that only the ages 

0-19 have experienced a worsening of their survival conditions. Their proportions of shifted 

deaths were negative and indicate that deaths were pre-shifted from later ages. All other age 

groups were also characterised by a reduction of the number of shifted deaths but the 

proportions were still positive. This trend of the age-specific proportion of shifted death 

would likely cause a stagnation of the period life expectancy than the observed rapid decline. 

The second example refers to the stagnated trend of the life expectancy between 1960 and 

1975. Although each age group contains significant proportions of shifted deaths, the 

improvement in period life expectancy was very slightly. This result is very surprising 

because the period mortality conditions enable a continuous shift of saved deaths especially 

among the older age groups. Both examples show that the trend in period life expectancy does 

not reflect the period mortality conditions characterised by the deaths shift. According to the 

logic of Bongaarts and Feeney, these discrepancies are caused by tempo effects. 

 

 

3. Age-specific proportion of shifted deaths and the tempo effect 

 

The age-specific proportions of deaths are directly related to the discussion about tempo 

effects in period mortality indicators. Bongaarts and Feeney (2002, 2008) show that the 

conventional period life expectancy is distorted by a tempo effect even when the mortality 

conditions have changed. Therefore, the period life expectancy is overestimated when the 

survival condition has improved or is underestimated in the case of increasing mortality. Both 

cases show that the conventional life expectancy does not reflect the current mortality 

conditions. This point was controversially discussed in the previous literature. The 

conventional way to derive the period mortality conditions was done by the assumption that 

the period death rates remain constant. Under this condition, the life expectancy calculated by 

the observed death rates indicates the average life time of a newborn as a consequence of the 
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current mortality conditions. On the other hand, Bongaarts and Feeney (2003, 2008) assume 

that the period mortality conditions can only be derived when the proportion of cohort deaths 

immediately reaches a value of one during the analysed period. According to their view, the 

period death rates have to be adjusted by the proportions of shifted deaths.  

 

Applying the proportion of shifted deaths from Eq. 6, it is possible to derive the adjusted 

death rate of the 2nd kind i(x,t)* by adding the age-specific proportion of shifted death to the 

observed incidence rates: 

 (7) ),(),()*,( txstxitxi +=   

 

The term ‘adjusted’ refers to the condition in which the total mortality rate (proportion of all 

cohort deaths which occur within a period) reaches exactly one. Thus, the sum of all adjusted 

age-specific death rates 2nd kind equals exactly one (Appendix 1). The adjusted age-specific 

death rate 1st kind then may be derived by the ratio proposed in Eq. 1: 
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By reformulating of Eq. 8 we get: 
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The numerator of Eq. 9a Dt-x(x)* is the adjusted number of birth standardised deaths at age x 

of the period t. Equation 9a presents that only the number of deaths is distorted by the number 

of shifted deaths whilst the number of person years remains unaffected. The adjusted number 

of deaths may be derived directly from the difference of the cohort survivors between two 

ages during the period t (see Appendix 2): 

 (9b) )1()()*( 1 +−= −−−− xlxlxD xtxtxt  

 

Both Eqs. 9a and 9b allow the reformulation of the methods for tempo-adjusted life 

expectancy without assuming a proportional change of mortality conditions. The first method 

M1(t) or CAL(t) proposed by Guillot (2008, Bongarts & Feeney 2008) sums the birth 

standardized person-years of each ages during a period t: 
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The number of age-specific person-years is the ratio between the age-specific number of birth 

standardised deaths and the adjusted death rate of the 1st kind (Eq. 9a). The second method 

M2(t) also known as mean age at death is formulated as (Sardon 1994, Bongaarts & Feeney 

2008): 
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This method adjusts the age-specific death rates 2nd kind by the total proportion of shifted 

deaths. This method only leads to a tempo-adjusted life expectancy when the proportion of 

shifted deaths is constant over age. However, the age-specific death rate 2nd kind may be 

adjusted more precisely by the age-specific proportion of shifted deaths (Eq. 7): 
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The denominator in Eq. 12 disappears because the sum of all adjusted death rates 2nd kind 

equals one. As can be proved in Appendix 3, M1(t)* equals exactly M2(t)* without any 

assumptions about the change in mortality condition.  

The last method M4(t) adjusts the age-specific death rate by the total proportion of shifted 

deaths (Bongaarts & Feeney 2008). But the death rate may also be adjusted directly by the 

age-specific proportion of shifted deaths (Eq. 9). The age-specific incidence rates of the life 

table LTi(t) calculated by the adjusted death rates are similar to the adjusted incidence rates of 

the period. The reason is that the adjusted death rates base on a forced stationary mortality 

condition. Thus M4(t) may be reformulated as: 

 (13) ∑
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⋅+=
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The considering of the age-specific proportions of shifted deaths allows to combine all three 

methods for tempo-adjusted life expectancy without the proportionality assumption. Figure 4 

presents the trend of the tempo-adjusted life expectancy among Swedish men beside the trend 

of the age decomposition of the shifted deaths and the trend of the conventional life 

expectancy. On the first view we can see that the tempo-adjusted life expectancy is always 

lower than the conventional life expectancy. This trend is caused by the amount of period 

shifted deaths which causes the tempo effect in each period. Another result is that the tempo-
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adjusted life expectancy better reflects the period mortality conditions characterised by the 

proportion of shifted deaths. During the Spanish flu epidemic, the tempo-adjusted life 

expectancy stagnated only because the most age groups had still positive proportions of 

postponed deaths. Furthermore, the adjusted life expectancy was characterised by a 

continuous increase during 1960 and 1975 whereas the conventional life expectancy 

stagnated. Thus, the continuous rise of the adjusted life expectancy was related to the high 

proportion of shifted deaths during these periods.  

 

Figure 4 Trend of age-specific proportions of shifted deaths, the period life expectancy and the 
tempo-adjusted life expectancy among Swedish men from 1851-2007 
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5. Conclusion 

 

In demographic research, the period life expectancy is an important indicator to quantify the 

period survival conditions. The conventional definition presumes that the life expectancy 

reflects the current mortality conditions. But various recent publications have critised this 

definition. They had shown that the period life expectancy is distorted by a temporary, 

disproportionate decline in the number of deaths if mortality changes in the respective period. 

Bongaarts and Feeney (1998, 2002) introduced the term “tempo effect” to descripe this 

phenomenon. 

 

This paper presents a method to derive the age-decomposition of shifted deaths. The 

proportions of shifted deaths cause the tempo effect in period mortality indicators because 

they deflate or inflate the period mortality intensity. The method presents that the age-specific 

proportions of shifted deaths includes the earlier shifted deaths as well as the number of 

deaths which is shifted during a period. However, the proportions are still period indicators 

because they do not contain any information about the age or period when deaths were saved. 

The indicator presents only the impact of current period mortality condition on the further 

shift of rescued deaths. This information is helpful to reformulate the proposed methods for 

tempo-adjusted life expectancy. The original definition is based on a proportional change in 

period mortality. Indeed, the age-specific proportions of shifted deaths enable the similarity of 

these methods without any assumptions about the trend of survival conditions. 

 

The empirical application presents that the age decomposition of shifted deaths is a 

meaningful indicator to describe the period mortality conditions. Furthermore, the comparison 

between the number of shifted deaths and the conventional life expectancy presents that the 

life expectancy only partly reflects the changes in current mortality conditions. The tempo-

adjusted life expectancy, however, is on a lower level compared to the conventional one but 

reflects more appropriate the trend in period mortality conditions. Future analyses of period 

survivalship can therefore only become more authoritative through an additional tempo 

adjustment of conventional life expectancy. 
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Appendix 1 

 

The total proportion of shifted deaths is the sum of all age-specific proportions of deaths  

(Eg. 5). The second sum indicates that age-specific proportion contains period shifted deaths 

and earlier shifted deaths of the cohort t-x (Eq. 6a): 
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The Eq. A1.1 reduces to two important addends. The first addend equals the negative TMR of 

the period t whereas the second term leads to the CMR of the oldest cohort living during the 

previous period t-1: 

 

(A1.2)  )1()()( −−+−= wtCMRtTMRtS  

 

The intensity of a cohort (CMR) is always one so that Eq. A1.2 can further reduce to: 

 

(A1.3)  )(1)( tTMRtS −=  

 

Equation A1.3 presents that the sum of all age-specific proportions of shifted deaths equals 

the difference of the TMR from one. 

 

 



16 
 

Appendix 2 

 

The adjusted age-specific number of birth standardised deaths may be derived by the 

differences of the cohort survivors between two ages during a period t. Considering the 

proportion of shifted deaths, the proportion of survivors at age x+1 of the cohort t-x is equal 

the proportion of survivor at the beginning of the period minus the adjusted incidence rate at 

age x: 
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The substitution of i(x,t) and s(x,t) from Eq. 6b we get: 

(A2.2)  
)1()1(

)1()1()1()1()()(

11

11

+=+

+=+++−++−

−−−−

−−−−−−−−

xpxp

xpxpxpxpxpxp

xtxt

xtxtxtxtxtxt  

       with )1()(),( +−= −− xpxptxi xtxt  

 

 

Appendix 3 

 

Eq. 8 presents a general relationship between the adjusted death rate of the 1st and 2nd kind 

by considering the age-specific proportion of shifted deaths. The use of this relationship 

allows to reformulating the proposed methods for tempo-adjusted life expectancy. The 

following calculations prove whether M1(t)* and M2(t)* are equal: 
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The adjusted death rate 2nd kind in Eq. A3.1 may be substituted by Eq. 8 whereas the product 

between the adjusted death rate 1st kind and the number of person-years leads to the adjusted 

number of deaths: 
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Before solving the conditions of Eq. A3.2, we solve each term separately: 
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The adjusted number of deaths Dt-x(x) in term A may be substitute by the difference of the 

cohort survivors between two ages during the period t (see Appendix 2): 
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The number of person years in term B may be estimated by the differences of the survivor at 

age x and remaining person years of the deceased persons at age x during the period t: 
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The adjusted number of deaths Dt-x(x)* may be substituted again by the difference of the 

cohort survivors between two age during the period t (see Appendix 2): 
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Both terms includes the number of cohort survivors above age 1 of the period t. Equation 

A3.2 reduces to: 
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