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INTRODUCTION

The demographic concept of age-structure has redei\great deal of attention lately. In
general terms, age-structure describes the disivibof the total population across the
age spectrum. Demographers argue that the distmbaf the population across cohorts
has significant consequences for social, politiaaj economic dynamics (Pampel and
Peters 1995; Pampel 1993). In particular, econgaitormance has been scrutinized as
a potential outcome of a changing demographic caitipa (McNiccoll 2006;
Macunovich 1999; Bloom and Freeman 1988; Brundlld@. Aging societies, with
many people out of the labor force (termed “depatsle are thought to have lower
levels of economic growth, while populations thia disproportionately young are
theorized to have higher growth potential. Evidemcfavor of this hypothesis is mixed
(Pampel and Peters 1995; Schapiro 1988).

More recently, this concept has been appropriayetid ecological modeling community
as a lens to understand differential effects ofutaipon on global environmental change.
In particular, the relationship between age stmegcand CQ emissions has garnered
significant attention (Liddle 2000; Zagheni 2011Néill et al. 2010). These papers posit
that a high ratio of working-age people relativette total population is positively
correlated with C@emissions (York, Rosa, and Dietz 2003b; Cole aadmayer 2004).
In particular, a high density of younger workersti®ngly correlated with increased
energy use (Liddle 2004), carbon dioxide emiss{tuddle and Lung 2010), and
environmental change-driven out-migration (Masgeyinn, and Ghimire 2010). Others

have found more inconclusive results (Martinez-daozand Maruotti 2011).



In this research, | investigate the effects of egmposition on county-level GO
emissions in the US. This analysis uses the STIR®&nometric framework as the
analytical platform for estimating the strengthtluése demographic variables on carbon
emissions. STIRPAT is an estimation techniquenitel for adapting the well-known
IPAT identity model of human drivers of environmanthange (Commoner 1972;
Ehrlich and Holdren 1971; York, Rosa, and Dietz&f0 Recent investigations by
environmental sociologists and ecological econaniktstrate the empirical stability of
population and affluence as correlates o, @@issions with this stochastic framework
(Cole and Neumayer 2004; Liddle 2004; Shi 2003 to improve upon this research
evaluating five metrics of age-structure as comptsef this model. Using an amended
STIRPAT model, these estimates illustrate thatrgromnty age compositions metrics are
not significant in estimating Cemissions. The total dependency ratio, previously
hypothesized to be a negative correlate of €@issions, is not statistically significant in
US counties. At the same time, the youth dependeim and relative cohort size are
both positive predictors of county carbon dioxideissions in the US, indicating that
older working-age populations and a large youthupettpon are positively correlated with
carbon. These estimates contravene prior themrgegding age-structure and
environmental degradation, suggesting insteadstinaller units of analysis demand
examination of age-specific consumption rates ratien age-specific production. These
estimates are robust across a variety of spedditsathat control for spatial effects, fixed

effects, and heteroskedasticity.

This work is of interest to geographers for sevezakons. Prior STIRPAT analyses
have largely neglected spatial effects in their eliogj efforts. This is true in both an
econometric and substantive sense. Though thepdepance of STIRPAT estimations
utilize cross-sectional and spatial data, few askltee specification issue of dependency
in the dependent variable (Paudel and Schaefer)200% consequences of failing to
account for this are well noted by geographers éin<d988; Anselin and Griffith 1988).
Second, the spatial disconnect between productidrcansumption—known in the
STIRPAT literature by the political economy termétabolic rift” (York, Rosa, and

Dietz 2003b)—fosters a potentially misleading pietaf affluence as a driver of carbon



emissions. In short, utilizing affluence in a Ibtevel estimate of IPAT opens up
potential specification issues from the disparaeggaphies of production and
consumption. Attributing all emissions to locausmes of capital is problematic, since
capital travels so widely. In this research, lugrghat age-structure, serving as a proxy
for the availability of economically active labancgaconsumption patterns, offers a more

appropriate model specification.

BACKGROUND LITERATURE

STIRPAT modeling is a research endeavor that attemo stochastically estimate the
well-known IPAT model (Dietz and Rosa 1997; Comnrdt@7?2; Ehrlich and Holdren
1971). Recognizing that the original identity freawork of environmental impactt=
populationP x affluenceA x technologyr is problematic for empirical analysis, Dietz

and Rosa (1997) reformulated it into a stochastideh given in logarithmic form by:

Inl =a+b(InP)+b,(In A)+b,(InT) +e (1)

wherel is the metric of environmental impa€tjs populationA is affluence, most
commonly GDP per capita, affds a measure of technology. The intercept is ghsea,
ande s the error term. Using natural logarithms akae terms to be estimated as
elasticities, where coefficients are given by petahanges. In this way, the model can
be interpreted as a production function where chamgoutput are relational to changes

in inputs.

A great deal of STIRPAT research uses this ecomonfeamework as a starting point,
adding or dropping variables in order to test uasimodel specifications at different
scales or using various countries or regions. [fmpulation and GDP per capita are the
most common metrics fé? andA, while total CQ emissions and derivative metrics such
as global warming potential (GWP) and £€uivalent, are the most common unit$. of
Many studies simply drop altogether, preferring to estimd®eA, andA? without the
difficulty of pinning T down to a single metric (Dietz and Rosa 1997; Samld DeHart
1998; DeHart and Soulé 2000). Regardless of theifip approachT remains difficult



to translate into a singular variable and the (nomm@mon) method of approaching this
problem is to estimate ‘technology’ using a widedtetical lens. More recent research
amends this I=PA framework with other social, eaqoi and demographic variables
thought to contribute to carbon dioxide emissidshplz 2006; Lankao, Tribbia, and
Nychka 2009; Jorgenson and Rice 2005; JorgensoCkanki 2010).

The central demographic focus of STIRPAT modelsgge structure. The most basic
assumption governing the demography-environmeatioglship is that the economically
active population exerts disproportionate forceCa» emissions. The preponderance of
research examining this relationship does so atdtienal level. Fan et al. (Fan et al.
2006) disaggregate a panel dataset of nation-dtat@s1975-2000, and find that the
percentage of the working-age population (15-64iegaconsiderably from a negative
determinant of C@emissions in high-, upper-middle, and low-incoroardries, to a
positive driver in China and other lower-middleente countries. Cole and Neumayer
(Cole and Neumayer 2004) illustrate that the pdmriaaged 15-64 is significant and
positive p = .995) for 86 countries over 24 years (1975-1988)g CQ as the
dependent variable. The variable becomes nonfgignt when percent urbanized
population is included, or the dependent variabl8@. York, Rosa, and Dietz (York,
Rosa, and Dietz 2003a) specify several cross-setdtgpecifications for 142 nations in
1996 and find the non-dependent population to Isitige and greater than unity
(ranging from 1.302 to 1.594) for a variety of gfieations and control factors in
predicting national ecological footprint. Thesénaates also illustrate urbanization and

an arctic or temperate latitude to be a positierdenant.

Several assessments using this metric have failedrifirm any significant role in
producing CQ emissions. The common thread in these papers isittusion of an
urbanization variable, suggesting that for natidaael STIRPAT assessments
urbanization and the non-dependent population @tieear effects. York, Rosa, and
Dietz (York, Rosa, and Dietz 2003b, 2005) find m@pendent population to be non-
significant in a Kuznets-modified STIRPAT for @@nd SQ of 137 countries in 1991.
It is significant and positiveb(= 1.536-1.780) for the combined global warmingential



of CO; and CH. Martinez-Zarzoso and Maruotti (Martinez-Zarzasd Maruotti 2011)
estimate a panel model for developing countries CIO, emissions from 1975-2003,
and using GDP, population, and urbanization finadnaertedu-shaped curve for
urbanization but no significant contribution fromeastructure.

Liddle (Liddle 2004) and Liddle and Lung (Liddlecabung 2010) assess age-structure
using more parsimonious terms. Controlling for GBénsity, and percent urban
population, Little (2004) finds that the percentloé population aged 20-39 is positive
and a near unit-elastic predictor of per capita reaergy use in OECD countries and US
households. Similarly, Liddle and Lung find agggCQ emissions to be higher
among countries with younger populations in a pasémate of seventeen developed
countries in 5-year intervals, 1960-2005. Theadist support hypotheses that posit

greater production and consumption among youngetgiuage 35) adults.

Structural modelers make significant use of ageettire variables in creating emissions
scenarios of future carbon dioxide emissions. 2ag(Zagheni 2011), for example,
finds that changes in US age-structure are likelgantribute to C@emissions.
Zagheni’'s input-output model estimates per cap{a ses until age 60 among US
households. Liddle (Liddle 2000) simulates popalatGDP, and age-structure in a
variety of emission scenarios for consumption. @INet al. (O'Neill et al. 2010) find
that aging is likely to reduce G@missions in industrialized countries in the cagnin

decades.

A commonality of nearly all age structure STIRPATUIdes is the use of national-level
data. This is largely an issue of data availghibpatially disaggregated data of impacts
(CO;,, SO, and other GHG) are difficult to obtain at subtoadl units of analysis.

Liddle (Liddle 2004) notes that reliable demograpdata are also similarly temporally
infrequent. Though many of these models are egtisnat the national level for data or
specification reasons (such as the inclusion ofdvgystems or political economy
variables), the tremendous within-unit variatiordefmographic processes in large

countries is potentially consequential in elucidgtihe relationships between



components of society and environmental change sphatial disjuncture between
production and consumption, in particular, maybeasfsequence in estimating
STIRPAT models using age structure, since age-Bpeates of production are different
than age-specific rates of consumption. Assuntiagygimilar arguments hold at smaller

scales of analysis is a potential model mis-speatiton.
ESTIMATION METHODS AND DATA

This research utilizes the STIRPAT framework toneate the role of county age
composition on C@emissions in the US. The primary aim is to as#ae® measures of
age structure and two metrics of relative coha s addition to the traditional
STIRPAT factors of population and affluence. Tleioally, these models engage the
assumptions of the previous literature with respeetge-specific economic dynamics
and the different geographies of production andsaoption. Prior use in demography
or ecological research, and a hypothesized rekstiprwith various factors of production
were two (primary) criteria in deciding to estimatang these metrics. While other
STIRPAT analyses have examined, and broadly coefirthe relationship between the
dependency ratio, age structure, and carbon diedqassions, this research is to the best
of the author’s knowledge the first attempt to nlodtative cohort size as a determinant
of GHG.

In order to estimate the effects of age structar€0, emissions in US counties, | use an

econometric model of the following form:

InG =a+b(InR)+b,(InA)+by(InA)* +b,(InS) +e 2)

WhereC;is the total C@Qemissions in county P;is the total county populatioi is the
median county household income, & the metric of age structure. Finalyande
are an intercept and an error term, respectivéhe sample used in this research is the

3107 counties of all US states and Washington, Bx€luding Alaska and Hawaii; the



latter are removed due to uncertainty in estimasipatial models with non-continuous
data. Data are for 2002 and represent all coufdgreshich data are consistent and
available during the study year. Descriptionsdach variable and the hypothesized sign
are in Table 1.

Equation (2) is recognizable as a Kuznets-modi#i@étRPAT model, with population,
affluence, and a squared affluence term estimatettieers of CQemissions. The
model | specify here is a cross-sectional modal(Sii 2003) and Cole and Neumayer
(Cole and Neumayer 2004) favor using panel data aess-sectional data, as both
temporal and spatial effects can be modeled. Bhasiticularly important in light of
specific structural and development effects betwamemtries that cannot be modeled
consistently with static, single-year data. Trddegxample, is a well-known factor in
biasing national-level carbon emissions profil@s¢es many countries import a
significant quantity of goods manufactured in otpkaces; several scholars have
attempted to model these effects in STIRPAT mo@klsgenson and Rice 2005; Ehrlich
and Holdren 1971; Stretesky and Lynch 2009; Binldatdiss 2006). While | prefer to
model the problems using panel econometric pro@sdarorder to avoid problems from
unobserved heterogeneity, data for county-leve} @®issions are only available for the
year 2002. County CQlata are from the Vulcan Project (Gurney et a0 @nd are
given by the natural log of total county g@missions, in tonnes.

Econometric estimates of the environmental Kuzneidel and STIRPAT modeling
efforts have many commonalities in their functioftaim. One prior criticism of Kuznets
models is the tendency to model population onefiehland side of the equation, rather
than as a variable to be tested (Cole and Neun2d@t). Though prior research broadly
confirms a unit-elastic relationship between popafaand carbon emissions (York,
Rosa, and Dietz 2003c; Rosa, York, and Dietz 2@@plz 2006), the strength of this
relationship at small analytical units is largehconfirmed. In this research, | use the
natural log of the total county population, theunat log of median household income,
and a quadratic income term to test the basid¢;dnger demographic and economic

drivers of CQ emissions. Using logged data allows the popuiatom to be interpreted



as an elasticity, where coefficients representgrarchange. A coefficient near unity
indicates a proportional (unit-to-unit) change bew population and carbon emissions.

The expected sign of population is positive and nedy.

| estimate median household income using a linedrqaiadratic term. Including a
guadratic term tests for the statistical preseri@anvertedJ-shaped relationship
between affluence and environmental impact. Thisitaear relationship is the basis for
the environmental Kuznets hypothesis. In this rhdtle affluence terms are centered
before squaring in order to mitigate problems aggrom collinearity between the two
terms. Per the STIRPAT framework, the expected sfghousehold income is positive
for the linear term; a significant and negativedpa#ic term (in concert with a positive

linear term) indicates the presence of an EKC.

Environmental Kuznets modeling has sustained atantial amount of criticism, both
from a methodological (Perman and Stern 2003; Auadi Becchetti 2006; Miller-
Fiistenberger and Wagner 2007; Romero-Avila 2008) aatheoretical standpoint (Stern
2004). Furthermore, this empirical technique isegally used to understand economic-
environment relationships borne out of long-runedlegment trajectories and structural
change. Finding statistical evidence in a locaélecross-sectional dataset does not
necessarily constitute substantive evidence inrfaf’a curve; a number of other
unobserved effects may be at work in driving thisdel estimate. | include these terms
in this model, however, because it has become atdnufactice to do so in STIRPAT.
Income data estimates are obtained from the Ceissuall Areas Income and Poverty

Estimates program (Census 2002).

The major contribution of this research is themeation of age structure effects on
carbon emissions in US counties. In this resedri@st five measures of age structure
and composition on C{emissions. Previous work focuses on the ‘econaliyiactive’
or non-dependent population—those aged 15 to B4hese estimates, | model the
prevalence of the economically active populatioa aatio of population under age 15

(the ‘youth’ cohort) and the population aged 65 awuer (the ‘elderly’ population) to the



population aged 15 to 64 (defined as the ‘workigg’ @r non-dependent population).
This is the total dependency ratio (TDR). Demograexplanations of the population-
degradation relationship argue that the greateptbportion of the non-dependent
population, the greater the productivity per capitd therefore GHG emissions. There
are several reasons why we should expect thighkytrincipal factor driving this
relationship is that dependent populations requaggtal that would otherwise be
invested elsewhere. A negative coefficient fortthtal dependency ratio (TDR) confirms
a hypothesis of declining carbon dioxide emissiath \wmcreasing numbers of

dependents.

In this investigation | disaggregate the relatiopsbrther by estimating the elderly and
youth cohort ratios separately. These are terimeelderly dependency ratio (EDR) and
youth dependency ratio (YDR), respectively. Paysihrese two dependent cohorts into
different variables allows for differing consumptipatterns between the two age groups
to be estimated. Although theories of age-strigcawgue that the size of the
economically active labor force is the primary drtyfactor behind emissions, the
relationship they bear to their dependents differssiderably depending on the age of
the dependent. Places with a high elderly depearydeatio, for example, have many
costs associated with caring for the aged and smpsecurity during retirement. These
costs are theorized to negatively impact the imaest rate, and therefore put downward
pressure on economic production. As in the TDRettgected sign of the EDR is

negative.

The expected sign of the youth dependency rapotientially more complex. In theory,
the same arguments regarding investment and prioduagbply; greater numbers of
dependents for each worker diverts greater ressdrom reinvestment and production.
Additionally, higher fertility can have potentialhegative consequences on productivity,
as labor required to rear children displaces lainoe in the workplace. Although prior
work has treated this as another form of the depreeyratio, where the expected sign in
places with high fertility is negative, | argue titiae relationship is more complex; in

many places additional children necessitate mdrerland more work in order to



financially support larger households. While tlgasoning is not the inverse of the
traditional DR hypothesis discussed above, it doesplicate the argument and expected

between the YDR and GO The expected sign of the YDR is either posibveegative.

In contrast to the dependency ratio measures, talggve cohort size (RCS) as an
alternative metric of age structure and as a wagstwnate the effects that different
demographic “mixes” bring to the economy and envinent. The intention of this
metric in demographic research is to understandimwconstant variance in the size of
age cohorts impacts various societal phenomenae S$lifferent age groups produce and
consume things at different rates during the litdeythe distribution of the population
throughout these age cohorts is potentially of eqnence. For the RCS measures
oriented towards “economic” relationships, the wiegkage population is balanced
between an older and younger cohort (thought te lo@alitatively different relationships
with production). Pampel and Peters (Pampel aner$&995) takes this ratio as
(30A06s4 / 15A0€29), While Brunello (Brunello 2010) uses a more bathmetric, given

by: (ssAg€s0/ 20A0€34).

In this research, | employ both the Pampel and 8tarRCS. A positive coefficient
indicates a county labor force weighted towardeofgbpulations is producing higher
levels of CQ emissions, while a negative coefficient indicated labor forces weighted
towards younger populations are associated withdrigarbon emissions. The former
represents a hypothesis of a mature workforce, eavbleler, more experienced workers
are more capitalized, and presumed to have gristels of productivity. In the case of
the latter, younger populations are assumed to beeager productivity borne out of a
disadvantageous position in the labor market aadtibsequent need to minimize this
risk factor. Thus greater productivity is a bypuotlof flexibility in location, time

devoted to labor outside the home, and (margin&yer family constraints.
Out of concern for potential bias resulting fromeneskedasticity and spatial

dependency in the error term, | use a three-foldeting procedure to estimate Equation

2. First, | use a robust ordinary least squaresqature with White’s heteroskedasticity-
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consistent standard errors (White 1978). Hetemebtecity in the error term violates
assumptions of the OLS regression model, and gpibrcorrect for this may result in
biased standard error estimates. White’'s covagiaggustment procedure has been
shown to produce standard error estimates consisbeler heteroskedasticity. Second, |
estimate each model using spatial-econometric proes. Failing to account for
dependency in the dependent variable or error tammead to biased estimates of
coefficients or standard errors, respectively (AnsE988, 1995). Finally, | employ a
state-level fixed-effects model in order to confaiunobserved state-to-state
differences. Although well-known state-to-statfedtences in the independent variables
creates the risk for over-determination in a cresstional model, this procedure is a
common method of controlling for unobserved differes at a common regulatory scale.
| estimate the fixed-effects models using bothatiaperror procedure and a generalized
least squares procedure in order to test whetleemtidel is robust controlling for both

spatial dependency and heteroskedasticity.

RESULTS AND DISCUSSION

Estimates for the dependency ratio models are pregén Tables 2 through 4. Broadly,
each of these regressions performed similarly,a®jplg between sixty-nine and
seventy-two percent of the variance. F-tests fdimary least squares estimates are
significant, and variance inflation factors (VIFs)d the multicollinearity index for each
OLS and spatial error model show that collineastwithin generally accepted

limits. Collinearity in the fixed-effects speciéitons is high; this is a common
consequence of including spatial fixed effects &ras the vector of terms for states
serves as a surrogate metric for geographic diffe® in population and income. Spatial
dependency in the error terms is significant inheaicthe models, and each of the fixed-

effects models illustrate a high degree of hetexdakticity.
Total county population and median household incamepositive and significant

determinants of C@Qemissions. Population exhibits a near unit-edastiationship with

the dependent variable, with coefficients rangiogf 0.847 to 0.897. These values are
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consistent with other STIRPAT estimates, which hemefirmed a hypothesized unitary
relationship with CQemissions. At the same time, income and the guiadsf income
are significant and consistent with the curvilineglationship of Kuznets. For all
dependency ratio specifications and proceduredirtear term is positive and significant
and the quadratic term is negative and significAhiddle income counties in the US,

then, are associated with the highest tota} €@issions.

The three dependency ratio measures illustratera owmplex relationship with

CO, emissions (Table 2). Prior work has illustratealt the size of the working age
population—assessed in numerically different wayas-a positive impact on carbon
dioxide emissions (York, Rosa, and Dietz 2005; ledzhd Lung 2010; Cole and
Neumayer 2004). These estimates paint a diffgretire. The total dependency ratio in
2002—estimated here as the ratio of those ageddnhd®5+ to the ratio of those aged
15-64—is a positive determinant of @OCounties with higher proportions of non-
working age people are correlated with higher cardioxide emissions, and a 10%
change in the TDR is correlated with ~2-3% changeanbon emissions.

The estimates for the elderly dependency ratio (E&*Rl youth dependency ratio (YDR)
explore this relationship further (Table 3 and #heories regarding age structure and
environmental impact specify declining consumptoth age, with working-age
populations driving consumption and, therefore ,@@issions. Using only the TDR to
estimate this relationship is problematic, as patoths under the age of 15 drive
consumption indirectly. Disaggregating the TDRoitwo measures of EDR and YDR is
an alternative for estimating whether different s outside of the working-age
population have differential effects on carbon diexemissions. According to
demographic theories regarding age structure avidoermental impact, the size of the
elderly population should be negatively correlatgith CO, emissions, while the size of
the youth population is either positive or negative

Regression procedures that substitute EDR and Yf@Rkown in Tables 3 and 4. None

of the four specifications for the elderly dependeratio are significant, while the YDR

12



is significant and positive for each procedure.efficients range fronb = 0.346-0.362 in
the fixed-effects models to= 0.504 in the robust OLS procedure. A ten perchange
increase in the ratio of youth to economically\aetdults results in a ~3-5% increase in
CO, emissions. The population and income terms grafgiant across all procedures

and are not substantially different than thoseabl& 2.

There are several possible interpretations forethiesoretically inconsistent estimates,
but none suggest or support an aging hypothesis@kased environmental impact. Put
colloquially, these models find no correlation betn the balance of the dependent
population and the non-dependent population withaadioxide emissions. At the
same time, the positive values for the youth depeay ratios can be viewed from a
consumption perspective, where counties with grdatglity have greater total carbon
emissions. Households with greater numbers oflail require more resources than
those with few or no children, resulting in highevels of impact. While these results do
not accord to prior age-structure work using@® an outcome variable (O'Neill et al.
2010; O'Neill, MacKellar, and Lutz 2001), local-eh\demographic processes and the
consequent emissions levels do not necessarilg sharsame relationship as posited by
macro-level studies of emissions and environmemtphct. Macro-level relationships
between age-structure, productivity, investmend, @mvironmental impact do not
account for the spatial circulation of capital tfgparticularly consequential at smaller
scales of analysis. These regression estimatessrdte that a lacuna exists between the
age-specific productivity and age-specific consuamtthe latter of which would be
‘spread’ more thinly (or evenly) throughout the plgtion. This difference in production
and consumption patterns is thus apparent at snsgiéial units when carbon dioxide is

the metric of environmental impact.

As a way of further understanding the role of derappic change and total

CO, emissions, | substitute dependency ratio metrits two ratio measures of relative
cohort size. These measures are coded RCSP fqgdPammetric (given by:
30Ag0es4/15Ag€ex9) and RCSB for the ratio used by Brunello (givendafgeso20Agess).
Pampel and Brunello specify these ratios diffegertut both are intended to capture the
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balance of two qualitatively different componemtghe labor force. | have included both

metrics as a measure of redundancy and test ofstensy.

Tables 5 and 6 show the results for the RCS reigess RCS-Pampel is significant and
positive in all procedures excepting the robusstieguares. The coefficients range from
0.150 to 0.213, which can be interpreted as a ~D% 2ncrease in C£emissions for
every 10% increase in the ratio of older workergdonger. Similarly, RCS-Brunello is
significant and positive, ranging from 0.240 to313 For both measures of RCS,
counties with larger older cohorts have higher,@Missions. Population retained unit-

elasticity, and income terms remain significantaading to the Kuznets hypothesis.

Though each of the relative cohort size estimdiiestiated positive coefficients and a
significant relationship between the size of thaeollabor force and Cmissions, the
coefficients for the Brunello estimates are muchda The numerically sharper lens of
the Brunello RCS—when compared with Pampel’s nutoerasuggests that the age
cohorts with the greatest capacity for emissioesrathe early-middle ages. These age
cohorts also represent the portion of the populatridh the greatest capacity to consume,

as well as those with the greatest number of degrerd

SUMMARY

A synthesis of these model estimates portends pleacndemographic-environmental
scenario that warrants further analysis. In genetates in 2002 that had greater
numbers of people over the age of 30 to 35 hadehighrbon emissions during that year.
Additionally, counties that had proportionatelygarunder 15 populations also had
higher CQ emissions, even when controlling for populatiomcome, and other spatial
effects. That these are associated in the samewtlayespect to Co&may reflect that
with increasing age the probability of having chélid increases, and that children and
middle-age adults have greater levels of consumpktian people in early adulthood and

in the beginning stages of entering the workforeeor demographic work contravenes
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this interpretation, where younger, childless albtve higher levels of productivity, but
the interpretation | am advancing here is more geerto a consumption-side argument,
rather than the production-side arguments of gtegrendency ratio models. These
estimates, then, are not analogous to O’Neill .& Hieories regarding investment and
savings levels as correlates of age and produgcti@iNeill, MacKellar, and Lutz 2001).
Rather, the age-structure correlations are stroagpeng the cohorts that have a greater
propensity to consume, not produce. While thisaesh does not take issue with the
theoretical arguments used by scholars estimatagyorevel models, it does suggest
that estimating human-environment relationshipgh@tocal level requires a different
conception of demographic-economic relationshigstae way they relate to

environmental change.
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Table 1) Definition of variables used and expected sign

Variable Description Expected sign
Natural log of the total county

Population population, 2002 +
Natural log of the median
household income, 2002,

Median Household Income centered on the mean +
Squared natural log of the

Quadratic of Median median household income,

Household Income 2002, centered before squaring -
Natural log of the dependency
ratio, given by: (Pop 0-15 + Pop

Total Dependency Ratio 65+ / Pop 16-64) -
Natural log of the dependency
ratio, given by: (Pop 65+ / Pop

Elderly Dependency Ratio 16-64) -
Natural log of the dependency
ratio, given by: (Pop 0-15 / Pop

Youth Dependency Ratio 16-64) +/-
Natural log given by: (Pop 30-64

Relative Cohort Size (Pampel) /Pop15-29) +

Relative Cohort Size Natural log given by: (Pop 35-50

(Brunello) / Pop 20-34) +
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2) Total Dependency Ratio Regressions

Pooled Fixed effects
1 2 3 4
OLS Spatial Error Spatial Error GLS
Population 0.861 *** 0.875 *** 0.874 *** 0.868 ***
t-score 62.592 61.412 58.125 58.704
Income 0.528 *** 0.563 *** 0.659 *** 0.656 ***
6.580 6.430 7.096 7.354
Income? -1.085 *** -1.020 *** -1.153  *** -1.214  ***
-7.150 -5.728 -6.617 -7.210
TDR 0.171 0.246 * 0.167 0.114
1.660 2.174 1.430 0.979
Intercept 3.209 *** 3.101 *** 4.097 *** 4.147 ***
25.398 21.297 17.118 18.625
Lambda 0.299 *** 0.164 ***
11.586 5.871
R-squared 0.690 0.708 0.720
F 1732.000
(0.000)
Log - - -
likelihood 3830.530 3745.930 3826.128
AIC 7799.639 7671.060 7597.860 7760.257
B-P 25.023 66.113 453.232
(0.000) (0.000) (0.000)
Cond. Index 21.755 38.098
VIF Avg. 1.313
VIF Max. 1.477

n=3107. All data are natural logs. Income terms are centered (before squaring, in

the case of the quadratic term to avoid multicollinearity problems. White's robust
standard errors are used in the OLS estimates.
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3) Elderly Dependency Ratio Regressions

Pooled Fixed effects
1 2 3 4
OLS Spatial Error Spatial Error GLS
Population 0.848 *** 0.866 *** 0.869 *** 0.862 ***
t-score 60.514 59.363 55.881 56.348
Income 0.493 *** 0.532 *** 0.632 *** 0.622 ***
6.141 6.068 6.734 6.888
Income? -1.183  *** -1.051 *** -1.160 *** -1.244  ***
-7.424 -5.742 -6.503 -7.197
EDR -0.093 -0.011 -0.001 -0.040
-1.598 -0.180 -0.014 -0.654
Intercept 3.111  *** 3.031 *** 4.028 *** 4.067 ***
24.791 20.570 16.853 18.275
Lambda 0.296 *** 0.161 ***
11.435 5.747
R-squared 0.690 0.707 0.720
F 1732.000
(0.000)
Log - - -
likelihood 3832.871 3746.946 3827.030
AIC 7799.405 7675.740 7599.890 7762.06
B-P 41.767 124.784 490.004
(0.000) (0.000) (0.000)
Cond. Index 21.812 38.078
VIF Avg. 1.394
VIF Max. 1.522

n=3107. All data are natural logs. Income terms are centered (before squaring, in

the case of the quadratic term to avoid multicollinearity problems. White's robust
standard errors are used in the OLS estimates.
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4) Youth Dependency Ratio Regressions

Pooled Fixed effects
1 2 3 4
OLS Spatial Error Spatial Error GLS
Population 0.855 *** 0.865 *** 0.865 *** 0.861 ***
t-score 69.332 63.404 58.704 59.264
Income 0.528 *** 0.549 *** 0.639 *** 0.644 ***
6.503 6.380 7.047 7.405
Income? -1.225 k** -1.147  *** -1.248 *** -1.311  *F**
-8.300 -6.424 -7.098 -7.699
YDR 0.507 *** 0.442 *** 0.346 *** 0.362 ***
5.067 4.169 3.143 0.109
Intercept 3.768 *** 3.579 x** 4.498 *** 4591 *x*
22.258 18.709 16.265 17.490
Lambda 0.288 *** 0.157
11.053 5.619
R-squared 0.693 0.709 0.721
F 1751.000
(0.000)
Log - - -
likelihood 3824.285 3742.023 3821.153
AIC 7776.196 7658.570 7590.050 7750.306
B-P 23.815 71.101 471.092
(0.000) (0.000) (0.000)
Cond. Index 25.563 43.028
VIF Avg. 1.242
VIF Max. 1.415

n=3107. All data are natural logs. Income terms are centered (before squaring, in

the case of the quadratic term to avoid multicollinearity problems. White's robust
standard errors are used in the OLS estimates.
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5) Rel Cohort Size (Pampel) Regressions

Pooled Fixed effects
1 2 3 4
OLS Spatial Error Spatial Error GLS
Population 0.857 *** 0.881 *** 0.892 *** 0.884 ***
t-score 63.772 57.901 54.009 54.656
Income 0.503 *** 0.475 *** 0.545 *** 0.568 ***
5.855 5.195 5.706 6.228
Income? -1.110 *** -1.056 *** -1.179  *** -1.237  ***
-7.367 -5.926 -6.766 -7.351
RCSP 0.027 0.150 * 0.213 * 0.179 *
0.434 2.158 3.023 2.531
Intercept 3.124 *** 2.758 *** 3.626 *** 3.771 x**
18.272 14.404 13.462 14.928
Lambda 0.305 *** 0.168 ***
11.828 6.016
R-squared 0.690 0.708 0.721
F 1730.000
(0.000)
Log - - -
likelihood 3830.606 3742.410 3823.907
AIC 7802.048 7671.210 7590.820 7755.813
B-P 17.527 52.293 460.253
(0.002) (0.000) (0.000)
Cond. Index 26.391 42.128
VIF Avg. 1.360
VIF Max. 1.593

n=3107. All data are natural logs. Income terms are centered (before squaring, in

the case of the quadratic term to avoid multicollinearity problems. White's robust
standard errors are used in the OLS estimates.
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6) Rel Cohort Size (Brunello) Regressions

Pooled Fixed effects
1 2 3 4
OLS Spatial Error Spatial Error GLS
Population 0.883 *** 0.905 *** 0.912 *** 0.904 ***
t-score 61.251 55.070 52.415 52.982
Income 0.407 *** 0.394 *** 0.494 *** 0.514 ***
4.681 4.239 5.153 5.612
Income? -1.121  Ekx* -1.068 *** -1.203  *** -1.260  *F**
-7.474 -6.006 -6.913 -7.497
RCSB 0.240 *** 0.307 *** 0.334 *** 0.315 ***
3.743 4.208 4.504 4.241
Intercept 2.822 x** 2.572 x** 3.529 k** 3.638 ***
17.572 14.303 13.638 15.022
Lambda 0.304 *** 0.166 ***
11.785 5.944
R-squared 0.691 0.709 0.722
F 1739.000
(0.000)
Log - - -
likelihood 3824.092 3736.851 3818.080
AIC 7790.654 7658.180 7579.700 7744.178
B-P 17.785 61.069 446.597
(0.001) (0.000) (0.000)
Cond. Index 25.276 39.414
VIF Avg. 1.537
VIF Max. 1.951

n=3107. All data are natural logs. Income terms are centered (before squaring, in

the case of the quadratic term to avoid multicollinearity problems. White's robust
standard errors are used in the OLS estimates.
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