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Abstract 

Background. In genome wide association studies (GWAS) of human life span, none of the 
genetic variants have reached the level of genome-wide statistical significance. The roles of such 
variants in life span regulation remain unclear. 
Data and Method. Biodemographic analyses of genetic regulation of life span using data on 
low-significance longevity alleles selected in the earlier GWAS of the original Framingham 
cohort.   
Results. Age-specific survival curves considered as functions of the number of longevity alleles 
exhibit regularities known in demography as “rectangularization” of survival curves. The 
presence of such pattern confirms observations from experimental studies that regulation of life 
span involves genes responsible for stress resistance.  
Conclusion. Biodemographic analyses could provide important information about the properties 
of genes affecting phenotypic traits. 
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Introduction 

Genome wide association studies (GWAS) of complex traits have been developed to 
perform intensive analyses of genetic influences on such traits. These studies have helped 
identify hundreds of genetic variants and have provided valuable information about their roles in 
such traits 1. Despite this evident progress, GWAS have not entirely met the expectations of 
many researchers. Most genetic variants identified so far confer relatively small effects on the 
traits of interest. Many of the detected effects remain below the levels of statistical significance 
established to correct the analyses for multiple comparisons. These small-effects-low-
significance single-nucleotide polymorphism (SNP) alleles conventionally have been excluded 
from further analyses of their roles in molecular metabolic pathways. The small contribution of 
selected SNP alleles to the variability of complex traits has generated debates about “missing 
heritability” 1-5. The use of data from the whole genome scan combined with an intensive search 
for rare alleles has been suggested as an alternative to existing GWA approaches. However, 
genetic data for populations of appropriate sizes with such levels of genetic details are not yet 
available to researchers.  

GWAS of human longevity share all these limitations. The candidate-gene approach used 
in genetic association studies of longevity has resulted in finding a number of genes whose 
connection to long life can also be associated with the roles they play in metabolic pathways. 
The effects of a number of such genes have been replicated in independent studies 6-9. 
Surprisingly, however, these genes have not shown significant effects in genome wide 
association studies of human longevity 10, 11.  

Lunetta et al. 10 performed GWAS using genetic data on 100K SNPs collected for 
participants of the original and offspring cohorts of the Framingham Heart Study (FHS). The 
authors concluded that longevity and aging traits are associated with SNPs on the Affymetrix 
100K GeneChip. However, none of the associations achieved genome-wide significance.  

Newman et al. 11 performed a meta-analysis of GWAS in Caucasians from four 
prospective cohort studies. The authors found 273 SNP associations with p < 0.0001, but none 
reached the pre-specified significance level of 5×10−8. Another recent meta-analysis of GWAS 
from nine studies also found no genome-wide significant SNPs for all-cause mortality and 
survival free of major disease or death 12. 

Two recent GWA studies confirmed the role of the apolipoprotein E (APOE) gene as the 
major genetic determinant of survival into old age. Deelen et al. 13 found one SNP located in 
TOMM40 at chromosome 19q13.32 close to the APOE gene (p = 3.39 x 10-17). Nebel et al. 14 
found one SNP near the APOC1 gene (p = 1.8 x 10-10) and this association was fully explicable 
by linkage disequilibrium with the APOE allele e4. No other SNPs reached the genome-wide 
significance level in these studies. 

Yashin et al. 15 found that genetic variants, individually selected using methods of 
GWAS, may jointly influence life span. The joint effect of polygenic score (“genetic dose”) on 
life span was substantial, and highly statistically significant. The relationship was replicated 
using data on an independent population. The set of selected genetic variants was able to predict 
a similar relationship in the replicate population. In this paper, we evaluate age patterns of 
mortality and survival for subgroups of individuals having different numbers of longevity SNP 
alleles in their genomes. We show that survival functions in the subgroups differ substantially, 
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and the difference in age patterns is similar to that in population-level survival observed in the 
distinct time points of the last century. We explain these difference and similarity using 
biodemographical methods and show that these explanations are consistent with recent findings 
from studies of aging and longevity. Note that the construction of polygenic score (genetic dose) 
which counts the number of longevity alleles contained in person’s genome resembles that of 
frailty (or cumulative deficits) index 16-18 which counts accumulation of deficits in individual 
during his/her life course.  

 

Data and Methods 

Data and General Approach. To reduce possible effects of missing data on survival functions 
of individuals having different genetic background we use data which passed high level of 
quality control procedure with SNP call rates 97% with subsequent imputation of  missing 
genotypes. These procedures resulted in 954 individuals from the original FHS cohort. Note that 
this number is smaller than that used in Yashin et al. 15. For each of these individuals we 
calculated the number of longevity alleles contained in their genomes (out of 39 longevity alleles 
selected from 550,000 SNPs in Yashin et al. 15). The detailed description of the Framingham 
Heart Study and the FHS genome-wide genotyping data can be found on the dbGaP website 
(phs000007.v3.p2). 

Using 39 longevity alleles selected from data on the original FHS cohort we constructed 
two polygenic score indices: one index measuring the additive genetic component of life span 
and another index counting the number of genetic variants contained in each subject’s genomes 
(see details in Supplemental Data). Each index was used for evaluating the joint influence of 
subsets of genetic variants on survival. We showed that the two indices explain about the same 
percentage of life span variance and are able to predict life spans in individuals from the 
offspring FHS cohort using genetic variants detected from the data on the original FHS cohort. 
We divided participants of the original FHS cohort into sub-cohorts of individuals having 
different numbers of longevity alleles in their genomes. Then we evaluated the joint influence of 
subsets of genetic variants on the age patterns of mortality and survival in these sub-cohorts. We 
separately fitted the Gompertz model to the mortality data at available age ranges in the sub-
cohorts, constructed the corresponding survival functions, and compared them. We used the 
Strehler-Mildvan mortality model 19 to guide our analysis of how the Gompertz parameters are 
affected by the genetic factors and “life saving” mortality model 20 to get insights about 
functional roles of detected genes in aging, health and life span.  

 

Results 

Regularities of genetic influence on survival. Fig. 1A illustrates the pattern of survival 
improvement observed in developed countries during the 20th century (sex-specific patterns are 
shown in Fig. S5 in Supplemental Data). Demographers have characterized such population 
survival curve improvements as “rectangularization,” or “compression of mortality,” by which is 
meant a shift towards very low mortality levels through the childhood and younger adult ages 
followed by steep decreases in survivorship at the older ages.  
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Using survival data on the participants of the FHS cohort carrying different numbers of 
39 “longevity alleles” (i.e., alleles, having positive effects on survival) selected in Yashin et al. 15 
from the original FHS cohort we evaluated mortality rates and survival curve patterns for the 
three groups of individuals having different numbers of such alleles in their genomes. We 
divided the entire sample of 954 individuals into these three groups so that the number of 
individuals in each group is approximately the same (344, 306, and 304, respectively). The 
number of longevity alleles carried by each individual in the first group is less than 23. The 
second group consists of individuals each having 23 to 25 longevity alleles in their genomes. The 
third group contains individuals with 26 or more longevity alleles. Fig. 1B shows that survival 
function for individuals from the second and third groups look more “rectangular” than that in 
the first group resembling difference in survival patterns observed in distinct time periods (see 
Fig. 1A).  

Fig. 1 about here 

Another striking similarity is between an almost linear increase of average life span as a 
function of the number of longevity alleles 15 and an almost linear increase in the life expectancy 
at birth over time 21. Fig. 2 shows an increase in average life span for groups of individuals 
whose number of longevity alleles varies from 0 to 39 (Fig. 2A) and the historical data on life 
expectancy at birth in the U.S. in 1980-2007 (Fig. 2B; sex-specific patterns are shown in Fig. S6 
in Supplemental Data).  

Fig. 2 about here 

What mechanisms might be responsible for such similarities in survival and life 
expectancy changes caused by two evidently different causes? To address this question the use of 
two biodemographic models could be helpful. The first one 19  represents human mortality rates 
as a result of interplay between the process of external disturbances or stresses and an age-
dependent decline in “vitality” – an index, characterizing individual’s ability to withstand 
stresses of life. The second model 20, 22 shows that observed trends in mortality decline can be 
explained by a process of “saving lives” resulting from improvement in economic and living 
conditions, as well as advances in health care and medical treatment. 

The Strehler-Mildvan model of aging and mortality. More than 50 years ago, Science 
published the seminal Strehler and Mildvan 19 paper, in which the exponential increase with age, 
x, in the Gompertz mortality rate, 0( ) exp( )x R x  , was represented as a result of interplay 

between external disturbances (stresses of/challenges to life) and the decline in the “vitality” 
variable describing individuals’ resistance to stresses. The model explained a striking regularity 
detected in comparisons of the Gompertz mortality rates across different populations: the 
parameters  R0 and α of this curve were not changing independently from one population to the 
next, as one might expect, but showed a strong negative correlation, later called the Strehler-
Mildvan (SM) correlation. This model has been applied to explaining differences in mortality 
rates among different populations 19, 23, 24 and to differences in mortality rates in the same country 
at different time periods, or in subsequent sub-cohorts 24-26, as well as in cause-specific mortality 
rates 27.  
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Fig. 3 shows the logarithms of the Gompertz mortality rates evaluated for groups of 
individuals in the original FHS cohort having different numbers of longevity alleles in their 
genomes.  

Fig. 3 about here 

The pattern of changes across the trajectories is typical of that for rectangularization of 
survival curves. The evaluation of the dependence of life span on the number of “longevity” 
alleles individual possess may shed more light on genetic nature of this trait. 

How the SM model explains observed patterns in survival improvements over time. The SM 
model represents the age-specific Gompertz mortality function 0( ) exp( )x R x  (which 

typically gives a good fit to population patterns of human mortality rates between ages 30 and 85 
years) in terms of two sets of parameters: one describes the age-dependent decline in vitality and 
the second characterizes external stresses. In the framework of the SM model, the observed 
rectangularization pattern of survival improvement over time (first time period in Fig. 1A) can be 
explained by a decline in the average magnitude of external stresses. The parallel shift of the 
entire survival curve to the right over time (second time period in Fig. 1A) can be explained by 
the decline in the frequency of external disturbances (see Supplemental Data for details). These 
are parameters in the model characterizing the properties of external disturbances. Note that 
external factors could also affect other two parameters describing initial vitality and its rate of its 
decline with age. Although possibility of such influence was discussed by Strehler and Mildvan 
19, it was not represented explicitly in terms of parameters of external disturbances. Thus in the 
framework of SM model observed trends can be explained by changes in parameters of external 
disturbances.  

How the SM model explains differences in survival for groups of individuals with different 
genetic backgrounds. The explanations given above are not valid for the patterns shown in Fig. 
1B. This is because, instead of considering of how changes in external conditions over time 
influence human survival, we consider how such survival is affected by differences in genetic 
parameters of individuals taken from the same population cohort (original FHS cohort), and 
exposed to the same external conditions. Therefore, different age patterns of survival (mortality 
rates) for these sub-cohorts are likely to be associated with differences in the parameters of the 
vitality function, which are likely to depend on the genetic backgrounds of the individuals 
comprising the respective sub-cohorts. The representation of the parameters of the Gompertz 
mortality curve (see Supplemental Data) together with the distinct patterns of survival functions 
shown in Fig. 1B indicate that the rectangularization pattern of changes in survival, in this case, 
can be observed if the initial value of vitality increases with an increase in the number of 
longevity alleles contained in individual genomes. In populations with such genetic backgrounds, 
the relative rate of decline in vitality remains unchanged, so the absolute rate of decline increases 
(see Supplemental Data).  

This connection between genetic changes and modifications of the hypothetical vitality 
curve, estimated from real data, indicates that changes in the genetic background of individuals 
may affect dynamic parameters of aging-related changes in physiological indices measured in 
longitudinal data. The use of the SM model shows what types of effects on the dynamic 
parameters of the age trajectories of physiological indices can be expected (e.g., improvement in 
survival may take place with and without changes in the rate of aging-related changes in relevant 
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biomarkers) when the genetic backgrounds of the study participants change. A better 
understanding of the roles of such genetic factors in biomarkers of aging may also shed light on 
the role of gene-environment interactions in survival changes over time (Fig. 1A). New 
environmental conditions may activate new genes, which may modulate parameters of the 
vitality curve. 

The presence of the SM correlation in the Gompertz parameters is associated with the 
“rectangularization” pattern of survival improvement 28. The corresponding decline in mortality 
rates can be represented by counter clock-wise rotation of the logarithms of the mortality curves 
around some point, so the logarithm of the parameter a declined and the parameter b increased. 
The use of the SM model allows for interesting interpretation of the roles of the longevity alleles 
in mechanisms responsible for changes in the shape of mortality rate. The effect of counter-
clock-wise rotation takes place if the number of such alleles determines the initial value of the 
vitality function (see Fig. S2). This may indicate that each such allele contributes to an increase 
in robustness and in resistance to stresses. 

Additional insights about possible biological mechanisms responsible for such patterns of 
changes can be gained by comparing these curves with those resulting from the “saving lives” 
model 20, 29, where the rectangularization pattern of survival changes corresponds to an increase 
in the number of times “individuals’ lives have been saved.” “Saving lives” can be achieved not 
only by direct life-saving interventions but also by providing living organisms with additional 
resilience, redundancy, and robustness, which increases their ability to withstand stresses. 
Analyses of data on factors and conditions experienced by centenarians have led researchers to 
the same conclusion: High resilience makes a substantial contribution to exceptional longevity in 
humans 30. Fig. 4 shows that interventions that save lives once hypothetically applied to the U.S. 
population in 1950 would transform the 1950-mortality rate close to the U.S. 2007-pattern (sex-
specific curves are shown in Fig. S7 in Supplemental Data).  

Fig. 4 about here 

Note that additional phenotypic traits relevant to our analyses include information on 
causes of death: cancer, CVD, or other/unknown cause and ages at onset of diseases (cancer, 
CVD, and diabetes mellitus). The occurrence of CVD, cancer and death in FHS cohorts has been 
followed through continuous surveillance of hospital admissions, death registries, clinical exams, 
and other sources, so that all the respective events are included in the study. We used the 
following data to calculate ages at onset of cancer, CVD, and diabetes mellitus: 1) dates of the 
first diagnosis of cancer (all sites but skin) from the follow-up data; 2) dates of the first CVD-
related event, as defined by the FHS event codes corresponding to myocardial infarction, angina 
pectoris, stroke (definite cerebrovascular accident (CVA), atherothrombotic infarction, cerebral 
embolism, intracerebral hemorrhage, subarachnoid hemorrhage), coronary heart disease- or 
CVA-related death, and congestive heart failure) from the follow-up data; and 3) dates of the 
first exam (offspring FHS cohort) with diabetic status (a person was defined by the FHS 
investigators as diabetic in a specific exam if his/her level of fasting blood glucose exceeded 126 
mg/dl or he/she indicated diabetes treatment in this exam). We also calculated age at onset of 
“unhealthy life” as the minimum of ages at onset of these three diseases. 

We calculated the number of selected longevity alleles contained in the genomes of 
genotyped individuals in the original and offspring FHS cohorts. Then we divided genotyped 
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individuals from the original and offspring FHS cohorts into sub-cohorts corresponding to (i) 
genotyped individuals carrying between 0 and 22 longevity alleles in their genomes ((≤22)-sub-
cohort), and (ii) genotyped individuals carrying between 23 and 39 longevity alleles in their 
genomes (>22) –sub-cohort). Then for obtained sub-cohorts of individuals and for each age we 
evaluated probability to survive to this age, probabilities of stay free of cancer, and free of CVD. 
Calculations of these characteristics for the sub-cohorts of the original FHS cohort were 
conditional on survival to age 80 years. This is because (>22)-sub-cohort has small number of 
individuals younger than 80 years. For the members of the offspring FHS cohort the data allow 
for evaluating corresponding characteristics starting from age 60.  

Figure 5A shows graphs of survival functions corresponding to mortality rates from 
cancer for the two sub-cohorts of individuals from the original FHS cohort conditional on 
survival to age 80. One can see from this figure that individuals having larger numbers of 
longevity alleles in their genomes (>22) have substantially better survival than members of the 
other sub-cohort having smaller number of such alleles (≤22). Figure 5B shows age patterns of 
survival functions corresponding to mortality from CVD for the two sub-cohorts of individuals 
from the original FHS cohort conditional on survival to age 80. The figure illustrates that 
individuals having larger numbers of longevity alleles in their genomes (>22) have substantially 
better survival than members of the other sub-cohort having smaller number of such alleles 
(≤22). Figure 5C displays age patterns of survival functions corresponding to total mortality rates 
for the two sub-cohorts of individuals from the original FHS cohort conditional on survival to 
age 80 showing that individuals with larger numbers of longevity alleles in their genomes (>22) 
have substantially better overall survival than members of the other sub-cohort having smaller 
number of such alleles (≤22). 

Fig 5 is about here 

Figure 6 shows that genetic variants detected in the original FHS cohort jointly influence 
total mortality as well as mortality by cause in the offspring FHS cohort (FHSO). Figure 6A 
shows age patterns of survival functions associated with mortality rate from cancer in the two 
FHSO subcohorts conditional on survival to age 60. One can see from this panel that survial 
function in the (>22) sub-cohort is higher than in individuals having smaller number of longevity 
alleles in their genomes (≤22). Figure 6B shows a similar effect for CVD, and Figure 6C displays 
survival finctions corresponding to total mortality. Figure 6C reveals that overall survival among 
individuals from the (>22)-sub-cohort is higher than that from the (0≤22) subcohort having 
smaller number of longevity alleles in their genomes. 

Fig. 6 is about here 

Figure 7A illustrates how the number of longevity alleles contained in persons’ genomes 
influences probability of staying free of cancer of all sites but skin in the FHSO cohort. One can 
see from this panel that study participants having larger number (>22) of longevity alleles in 
their genomes have better chances to stay free of cancer of all sites but skin than those having 
smaller number (≤22) of such alleles. Figure 7B displays how the number of longevity genes 
contained in persons’ genomes influences probability of staying free of CVD in the FHSO 
cohort. It shows that study participants having larger number (>22) of longevity alleles in their 
genomes have better chances to stay free of CVD than those having smaller number (≤22) of 
such alleles. Figure 7C shows how the number of longevity genes contained in persons’ genomes 
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influences probability of staying free of diabetes in the FHSO cohort. One can see from this 
panel that study participants having larger number (>22) of longevity alleles in their genomes 
have better chances to stay free of diabetes than those having smaller number (≤22) of such 
alleles. Figure 7D illustrates how the number of longevity genes contained in persons’ genomes 
influences probability of staying free of three major aging related diseases: cancer of all sites but 
skin, CVD, and diabetes in the FHSO cohort, revealing that study participants having larger 
number (>22) of longevity alleles in their genomes have better chances to stay free of three 
major diseases than those having smaller number (≤22) of such alleles.  

Fig. 7 is about here 

Discussion 

Demographers, studying trends in mortality and survival in populations of developed countries, 
have long had debates about “mortality compression” or “rectangularization of survival curve” – 
the process which took place in the first half of the 20th century. Although these changes were 
always linked to improvements in environmental and living conditions as well as advances in 
health care and medicine, there were no biological explanation of how these improvements got 
“under the skin” of the individuals in the populations to produce such rather specific trends in 
observed age patterns of mortality and survival. The biodemographic models described above 
provide useful insights: biological systems responsible for the human body’s resistance to 
stresses (e.g., heat shock proteins) and resilience (e.g., DNA repair) are likely to be involved. 
Myers and Manton 28 showed that in the second half of the 20th century the tail of the survival 
curve in the United States tended to increase across the older years of age. Horiuchi and Wilmoth 
31, 32 confirmed an increase of the tail of the life span distribution in the population of the United 
States. Wilmoth and Horiuchi 33 found that the decline in variability of life span, associated with 
a rectangularization pattern of changes in survival curves, came to an end around 1950 in 
Sweden and the United States so the “compression of mortality” concept lost its ability to 
describe mortality trends. These findings were summarized in papers by Yashin et al. 25, 26  which 
found that the process of rectangularization of the survival curve, which took place in the first 
half of the 20th century, was later replaced by an almost parallel shift of the entire survival curve 
to the right (Fig. 1A).  

The use of the SM model in analyses of genetic data shows that genetic factors may 
modify values and dynamic properties of variables describing aging related transformations in 
the human body, and these modifications influence life span. Evidence for such influences is 
provided in a number of epidemiological studies. Port et al. 34 showed that the level of blood 
glucose affects mortality risk among subjects with cardiovascular disease. Yashin et al. 35 found 
associations between values of physiological indices at ages between 40 and 60 years and life 
span. Benetos et al. 36 found that dynamic properties of blood pressure affect mortality risk.  
Extending these analyses, Yashin et al. 37 also found that not only the values of these variables, 
but also their dynamic characteristics (e.g., the rate of changes), are associated with life span, and 
healthy life span. These findings together with the insights from the SM analyses suggest that at 
least some of the detected associations may be caused by the joint influence of the number of 
genetic variants individually selected for their effects on health and survival outcomes.  

The observed patterns in survival/mortality changes have important interpretations from 
the point of view of reliability theory. Indeed, the parallel shift of the mortality curve to the right 
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corresponds to a proportional modification of the corresponding hazard rate. Such changes are 
expected in the series connection of N sub-systems with similar age patterns of failure rates when 
one or several sub-systems becomes invulnerable (e.g., by providing them with high levels of 
redundancy, or repair capacity). The rectangularization (mortality counter clock-wise rotation) 
pattern corresponds to providing a limited redundancy (or limited additional repair capacity) to 
one or more sub-systems 38. This analogy is consistent with systems biology approaches 39 to 
studying aging and longevity with identification of corresponding systems blocks, connections, 
reserve capacities and repair mechanisms at different levels of an organism’s biological 
organization. The presence of an “almost parallel shift” of survival curve to the right in Fig. 1A 
(showing changes in survival over time), and its absence in Fig. 1B (showing dependence of 
survival on genetic background), may indicate higher plasticity of mortality and survival in 
response to changes in external factors compared to changes in genetic background: The 
relatively low estimates of narrow sense heritability in life span (about 25%) support this view, 
and encourage the search for external factors capable of further improvement in human health 
and life span.  

Improvements in environmental conditions (including changes in nutritional and living 
conditions, the use of new drugs, and new treatment procedures) are likely to activate new genes 
and modify metabolic pathways which contribute increases in life span. Some of these genes 
may have large effects on life span; evidence to date from GWAS indicates that many others are 
likely to have small individual contributions. Accordingly, it could be hypothesized that the 
patterns shown in Fig. 1A reflect the contribution of genetic changes as well, resulting from the 
activation of a large number of small-effects longevity alleles in response to the changing 
environmental conditions across the past two centuries. Strehler and Mildvan 19 envisaged such 
possibility by allowing the relative rate of vitality decline to depend on environmental factors as 
well. Being confirmed, this hypothesis will improve our understanding of how life span is 
regulated by external factors, and genetic analyses will help identify multiple genes which are 
likely to be collectively involved in such regulation. So the dependence of the parameters of the 
Gompertz mortality curves on characteristics of external stresses in the SM model is a useful 
simplification which was relevant for explaining SM correlation in the pre-genomic era. New 
models capturing specific effects of gene/environment interactions and describing genetic 
mechanisms mediating external influences on aging related changes, health and survival 
outcomes are needed to properly explain the response of the body and phenotypic traits to 
changes in external factors.  

Note that even if the patterns of differences in survival functions in the two panels in Fig. 
1 look similar, and can be explained in terms of improved robustness and resilience, the 
mechanisms responsible for such changes are not necessarily the same. An improvement in 
survival over time involves the influence of advancing health care and medical technology (e.g., 
proper access to emergency care, implantation of pacemakers, performing by-pass surgery, etc.), 
which could extend life without affecting genetic mechanisms, for example, by increasing the 
reliability of functioning in certain biological organs, or subsystems. Currently, more than 
500,000 people in the U.S. have implanted pacemakers and over 100,000 people get new 
pacemakers implanted per year. The rate of implanting is higher in the elderly with over 85% of 
implants received by those over age 65. The results of this paper provide researchers with new 
insights about the roles of advances in health care, medical technology, and medicine in survival 
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improvements: medical interventions today may substantially compensate for limitations of 
genetically-based vitality mechanisms and increase life span. 

The existence of additive genetic effect on lifespan explored in our study is in agreement 
with basic principles of quantitative genetics considering complex trait as a function of many 
genetic and non-genetic factors. The additive genetic component of phenotypic trait is 
responsible for transmission of a trait through generations and plays the key role in evolutionary 
theory of complex traits. It is also responsible for the narrow sense heritability of such traits, 
which in case of lifespan is about 25% 40, 41. 

The additive joint influences of genetic variants on the risk of various diseases have been 
tested in several other studies using an aggregated index called “genetic or polygenic score” 42-47. 
Similar to our indices, the construction of genetic score functions involves weighted and un-
weighted sums of indicator functions of the genetic variants. These studies did not provide 
biological justifications for their score functions, and they used genetic variants detected in 
different studies and often in different populations. The results of such “meta-analyses”, 
however, should be used with care, because the genes affecting the studied traits might be 
sensitive to external conditions. In GWA studies of schizophrenia and a number of other 
psychiatric disorders often none of genetic variants reached genome-wide significance. In such 
cases, substantially relaxed p-value thresholds are often used in allele selection procedures 48. 
Selected small-effect-low-significant genetic variants are used to construct genetic scores, and 
test their influence on disease traits. Accordingly, more work is needed on the selection of 
influential alleles and the evaluation of regularities of their joint influence on health-related 
traits.  

The results of our analyses show that genetic factors jointly affecting life span also jointly 
influence onsets of several major age-associated diseases. The index used for quantifying joint 
genetic influence called “genetic dose” (the non-weighted sum of genetic variants contained in 
human genome) is a surrogate measure of additive genetic component (AGC) of phenotypic trait, 
which is a weighted sum of genetic variants contained in persons’ genomes with estimated effect 
sizes used as weights. The normalized (i.e., having values between 0 and 1) indices of genetic 
dose and AGC explain about the same portion of life span variance. It is natural to expect that 
the additive genetic component evaluated from the genome wide data influences life span, 
because life span is a heritable trait. Moreover, additive genetic component could be evaluated 
for any heritable trait when SNP map is dense enough.  

The fact that SNP alleles selected for their effect on life span jointly influence major 
diseases suggests an idea of using this property in the two-step GWAS of complex diseases when 
data on life span and health histories are available for the same individuals. The first step, 
selecting genetic variants for their effect on longevity, could be considered as a procedure for 
prioritizing SNP alleles for studying genetics of complex disorders. Since this procedure 
dramatically reduces the number of SNPs compared to the initial set of SNPs, the p-value 
threshold corrected for multiple testing at the second stage of selecting SNP alleles affecting 
disease trait could be relaxed.  

           The fact that the identified SNPs jointly influence several major diseases suggests that 
respective genes might affect these diseases through non-disease-specific, aging related, 
mechanisms (e.g., they could influence overall stress resistance) and thus they might provide a 
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link between genetic regulation of aging, vulnerability to diseases, and lifespan.  One should note 
that some of the loci previously identified in GWAS of diseases also appear to be involved in 
several diseases (10). For example,  Zhernakova et al. (11) provided evidence for shared genetics 
and pathogenesis for autoimmune and inflammatory diseases. Easton and Eeles (12),  Rafnar et 
al. (13), Sakamoto et al. (14), and Wu et al. (15) showed that the variants in a number of loci are 
linked to several cancers. Gudmundsson et al. (16) provided evidence on opposite effects of 
some genetic variants on prostate cancer and type 2 diabetes (T2D). Several SNPs in 9p21 locus 
were found to be associated with a number of diseases including various cancers, cardiovascular 
diseases (CVDs), and T2D (17-19).  

Our analyses showed that the joint influence of longevity alleles on age at disease onset is 
smaller than that on life span. This may indicate that the identified genes (or some of them) are 
likely to contribute to life span beyond pathways dealing with specific disease development. 
Some of such genes might affect aging rate, and modulate age at onset of clinical frailty instead 
of disease. Some others might make major contribution to body’s resilience, i.e., to the ability of 
coping with disease when it strikes, and have much smaller effects (if at all) on body’s 
“robustness”, i.e., protection against disease development. 

In our 2010 paper (9) we provided summary of functions (known or suggested) for genes 
closest to the 39 longevity SNPs and found enrichment with genes related to cell adhesion (see 
Table 1 of respective paper). Further analysis of literature revealed that relevant genes are also 
broadly involved in cancer, proliferation, response to damage, and brain signaling, with 
individual genes often involved in several processes (e.g., CDH4, TGF alpha, STK24), so that 
their effects on longevity may involve both aging and disease related mechanisms.  It is in 
principle possible that most of the effects of longevity genes on disease risks are realized through 
non-specific aging related mechanisms (e.g., by affecting speed of stress response, which 
depends on rates of proliferation, metabolism, and information processing in body) that similarly 
affect development of many diseases, rather than through disease-specific mechanisms.  It is also 
useful to check whether genetic variants which are primarily associated with specific diseases 
will also jointly influence life span.  

Few existing studies actually addressed this question. Beekman et al.  (20) investigated 
joint  effect of 30 SNP disease-associated alleles on human longevity in data collected in Leiden 
Longevity Study (LLS) and Leiden 85 Plus Study. Note that these alleles were detected in other 
(not in Leiden’s) GWA studies. The authors found that the average number of disease alleles 
contained in the genomes of individuals of different age does not depend on age, which was 
interpreted as that the number of selected disease-alleles contained in persons’ genomes does not 
compromise longevity. They also found that none of the selected alleles significantly affected 
life span when accounting for multiple testing.  One reason could be that these same alleles (or 
some of them) might not be the risk alleles in the study population. The assumed effects of some 
of the selected alleles on disease risks were not confirmed in other studies (e.g., rs564398 was 
not confirmed in meta-analysis by Bao et al. (21); and rs10497721 was not replicated by the 
same team that originally found it (22,23)). This controversy raises an important question on 
replicability of genetic findings.  Is the failure to replicate an indicator of false positive 
discovery, or it is a fundamental property of genetic compensatory and adaptive mechanisms 
which could activate different genes and some time different pathways from genetic network 
involved in trait regulation in response to difference in conditions? In this latter case the 
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requirement to replicate the association of genetic variant with a trait using data on independent 
population does not have solid theoretical background. It is probably more reasonable to consider 
replication of the pathways leading to the same outcome (e.g., a particular aging or longevity 
phenotype), rather than individual SNPs or genes.  

The results of our analyses indicate the presence of genetic mechanisms responsible for 
connection among different diseases. Analyses of health related data on incidence, prevalence, 
and cause specific mortality indicate that genetic effects on disease development can be 
modulated by external factors, resulting in distinct patterns of disease dependence observed in 
different study populations. Using multiple causes of death data Yashin et al. (24) showed 
significant time trend in negative correlations between cancer and a number of other diseases. 
Ukraintseva et al. (25) showed that manifestation of trade-offs between risks of cancer and other 
diseases depends on sex, age, and study population.  Understanding such mechanisms as well as 
causes of disease dependence could substantially improve demographic predictions of life 
expectancy at birth resulted from eradication, or reduction of mortality from selected causes (24). 
Traditional approaches to calculating consequences of such interventions assume that chronic 
disorders are independent. The results of our analyses confirm that dependence between diseases 
has also genetic background. 

Experimental studies of aging and longevity using laboratory animals show that genetic 
and dietary interventions can simultaneously improve health and increase life span. Positive 
association between health and longevity has also been detected in a number of human studies. 
Newman et al. (26) used data from Long Life Family Study (LLFS) to test whether the 
recruitment targeting longevity resulted in a cohort of individuals with better health and function.  
The authors found that diabetes, chronic pulmonary disease and peripheral artery disease tended 
to be less common in LLFS probands and offspring compared to similar aged persons in the 
other cohorts.  Physiological risk factors and functioning were also better in LLFS population.  

Barral et al. (27) assessed cognitive performance in the combined offspring of the LLFS 
probands and their siblings as well as in their spouses. The results indicate that LLFS family 
members in the offspring generation demonstrate significantly better performance on multiple 
tasks requiring attention, working memory, and semantic processing when compared with 
individuals without a family history of exceptional survival.  

Kulminski et al. (28) found a pleiotropic effect of the APOE e4 allele. It predisposes 
carriers of this allele to early onset of CVD but postpones cancers to older ages. Barzilai and 
Gabriely (29) showed that genetic factors that are associated with human longevity are heritable 
and may contribute not only to quantitative longevity but also to protection from age-dependent 
disease and promotion of exceptional health. 

The results of studying genetic mechanisms, which increase life span by protecting from 
major aging related human diseases, will provide important insights for strategies of 
improvement of population health. Better understanding of factors and mechanisms responsible 
for body’s robustness will play the key role in developing preventive measures. Investment in 
disease prevention will contribute to reduction of medical (e.g., Medicare) costs. The new 
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knowledge about genetic mechanisms of body’s resilience will provide useful insights on 
development of more efficient medications and treatment procedures aiming to reach complete 
recovery from disease. 
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Fig. 1: Different factors produce similar patterns of changes in survival. (A) Survival curves 
(conditional at age 60) in the U.S. total population (both sexes) in years 1933-2007 (data source: 
Human Mortality Database). (B) Patterns of changes in survival of carriers of different numbers 
of longevity alleles detected in our GWAS of the original FHS cohort corresponding to 
Gompertz approximations of corresponding mortality curves.  
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Fig. 2: Different factors produce similar changes in mean life span. (A) The “genetic dose – 
phenotypic response” relationship between the numbers of selected “low-effect longevity” alleles 
(39 total) contained in individuals’ genome and mean life span of individuals carrying a given 
number of longevity SNPs in their genomes (analyses of 500K SNP data, original FHS cohort). 
Dots represent observed data; dashed line represents the fitted linear regression. Longevity 
alleles were selected using a linear regression procedure, which involved comparison of 
characteristics of life span distributions among carriers and non-carriers of each of 500K genetic 
variants. (B) Life expectancy at birth in the U.S. total population (both sexes), 1980-2007 (data 
source: Human Mortality Database). Dots represent observed data; dashed line represents the 
fitted linear regression. 
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Fig. 3: Mortality rates for populations with different genetic background show SM-correlation. 
The logarithms of estimated mortality rates approximated by the Gompertz curves in groups of 
FHS original cohort members having different numbers of low-effect longevity alleles in their 
genomes 
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Fig. 4: Saving lives contributes to explanations of mortality and survival improvement. (A) 
Logarithms of mortality rates for U.S. total population (females and males) in 1950 (open 
circles) and in 2007 (open triangles). The 1950 mortality rate is approximated by the Gompertz 
function with n = 0, where n is the number of times individual’s life has been saved. The other 
curves correspond to mortality rates obtained by transforming the 1950 Gompertz mortality rate 
using the life saving equation with n = 1, 2, 3, 4, and 5. (B) Survival functions for U.S. total 
population (females and males) in 1950 (open circles) and in 2007 (open triangles). Three other 
survival curves correspond to mortality rates obtained by transforming the 1950 Gompertz curve 
using the life saving equation with n = 1, 2, and 3. 
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Fig. 5: Survival functions corresponding to cause-specific and total mortality for two sub-cohorts 
of individuals from the original FHS cohort (those having 0-22 longevity alleles vs. carriers of 
23-39 longevity alleles), conditional on survival to age 80: A) Survival functions for mortality 
from cancer; B) Survival functions for mortality from CVD; C) Survival functions for total 
mortality 
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Fig 6: Survival functions corresponding to cause-specific and total mortality for two sub-cohorts 
of individuals from the offspring FHS cohort (those having 0-22 longevity alleles vs. carriers of 
23-39 longevity alleles, identified in the original cohort), conditional on survival to age 60: A) 
Survival functions for mortality from cancer; B) Survival functions for mortality from CVD; C) 
Survival functions for total mortality 

 

 



24 

 

 

Fig. 7: Probabilities of staying free of different diseases for two sub-cohorts of individuals from 
the offspring FHS cohort (those having 0-22 longevity alleles vs. carriers of 23-39 longevity 
alleles), conditional on staying free of the disease to age 60: A) Probabilities of staying free of 
cancer (all sites but skin); B) Probabilities of staying free of CVD; C) Probabilities of staying 
free of diabetes; D) Probabilities of staying free of “unhealthy life” (defined as the onset of 
cancer (all sites but skin), CVD, or diabetes) 

 

 

 

SUPPLEMENTAL DATA 

Index for measuring additive genetic contributions to life span. The additive genetic 

component of phenotypic trait is a well established notion. Evolutionary models of phenotypic 
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traits, theoretical principles of quantitative genetics, breeding experiments, as well as many other 

aspects related to the transmission of genetic effects through generations involve this notion. In 

the pre-genomic era, the effects of additive genetic components of phenotypic traits were 

estimated indirectly using data on related individuals. The availability of genome wide data 

nowadays allows for direct evaluation of the respective effects. To do this, denote by B the set of 

39 SNP alleles, i.e., SNPi  B if SNPi was selected in the allele selection procedure in Yashin et 

al. 1 ; and let î  be the effect size of SNPi, i = 1, 2, …, 39, estimated in that procedure. Denote 

by Bj  B the subset of B consisting of SNP alleles contained in the genome of the jth individual, 

j=1, 2,…, 954. The additive genetic component (AGC-index) of the life span of the jth 

individual, Gj, can be represented as a weighted sum of indicators,  I(SNPi  Bj), SNPi  B, with 

normalized weights, 1
ˆ ˆN

i kk
 

 , N = 39:  

  ˆ ˆ ( )j i k i ji B k B
G I SNP B 

 
   . (S1) 

This function is sometimes called the “genetic or polygenic score” 2-6. Thus, by the definition of 

the additive genetic component, the life span of the jth individual (LSj) can be represented as  

 0 1j j jLS G E    . (S2) 

Here Ej denotes the value of a random variable for individual j representing the environmental 

component of life span with an expected value of zero. The function Gj is constructed from 

genetic data, and is treated as an observed covariate. The parameters 0  and 1  have to be 

estimated from the data. The percent of phenotypic variance explained by the estimated 

relationship, jj GSL 10 ˆˆˆ   , can be used as the measure of goodness of fit.  
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Note that the values of the effect sizes for individual SNP alleles are never known 

exactly. Their estimates as well as the p-values of these estimates may depend substantially on 

the statistical model describing the connection between the genetic variant and the phenotype of 

interest, and used in the allele selection procedure. We verified this statement empirically by 

selecting longevity alleles using Cox, logistic, and linear regressions, the GEE method, and 

mixed effects models, in the allele selection procedure. The use of these methods resulted in 

different sets of SNP alleles and in different estimates of the effect sizes of SNP alleles from the 

overlapping sets. Therefore, the values of the genetic scores, the estimates of 0  and 1 , as well 

as the percentages of explained phenotypic variance characterizing genetic contributions to life 

span, also differed from one model to the next. This dependence on the methods used in the 

allele selection procedure may jeopardize the validity of the research results concerning the 

strengths of genetic influences on a trait.  

In view of this finding, we proceeded as follows. First, we used the set B of 39 SNP 

longevity alleles selected in Yashin et al. 1. Second, we extended the notion of “genetic dose” 

widely used in the one-locus-models of quantitative genetics to quantify additive genetic 

influence, to the multi-loci situation. Note that formally the genetic dose index can be obtained 

by summing nearly equal contributions of different alleles to life span (i.e., for longevity alleles i 

and k, this implies ˆ ˆ
i k  ). In this case, the genetic score function AGC, for the jth individual 

simplifies to 
1

( )j
j j i ji B

N
G n I SNP B

N N 
    , i.e., becomes proportional to the numbers of 

longevity variants contained in person’s genome (NLV-index). In this case the life span of the jth 

individual can be represented as follows:  
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 0 1j j jLS n E    . (S3) 

Surprisingly, the percentages of phenotypic variance explained by representations (S2) 
and (S3) were about 15% in each case (see Fig. S1). This similarity supports use of the 
proportion of genetic variants contained in each subject’s genome as convenient characteristics 
for quantifying the person’s genetic background.  

Polygenic score indices in the analyses of complex traits. Note that versions of additive 
genetic components (also called polygenic score indices, or genetic risk scores in some papers) 
have been intensively tested in a number of genetic studies of complex traits. In some studies, 
including Machiela et al. 7, effects were not found. In many others effects of polygenic scores on 
the traits of interest were clearly demonstrated, and its usefulness for genetic analyses was 
emphasized. For example,  Reeves et al. 8 studied how the risk of breast cancer and its subtypes 
depend on low-penetrance susceptibility loci, individually or in combination. The authors used 
14 SNPs previously linked to the disease to construct several polygenic risk scores. The analyses 
showed that the polygenic risk score was substantially more predictive of estrogen receptor 
(ER)-positive than of ER-negative breast cancer, particularly for absolute risk. Witte and 
Hoffman 9 used a polygenic model in GWAS of prostate and breast cancer. The authors showed 
that the polygenic model can explain an increasing-albeit low-amount of heritability for both of 
these cancers, even when excluding the most statistically significant associations. In addition, 
nonaggressive prostate cancer and breast cancer appear to share a common polygenic model, 
potentially reflecting a similar underlying biology. The authors concluded that their results 
support the further development and application of polygenic models to genomic data. Qi et al. 10 
constructed a  genetic risk score to investigate genetic influence on myocardial infarction (MI). 
The authors found that discrimination of MI was significantly improved when the genetic risk 
score was added to a model including clinical predictors. Chen et al. 11 investigated the effects of 
a genetic risk score on psoriasis. The authors found that such a score combining 10 psoriasis risk 
loci captured significantly more risk than any individual SNP and was associated with early 
onset of disease and a positive family history. Hivert et al. 12 found that in multivariate-adjusted 
models, the genetic risk score was significantly associated with increased risk of progression to 
diabetes. 

Effect of polygenic score on lifespan in the presence of information on smoking. In order to 
test whether joint influence of genetic variants on lifespan will remain significant in the presence 
of observed covariates we performed regression analyses of lifespan considered as function of 
our polygenic score constructed from 39 longevity SNPs and smoking status (never smoked or 
ever smoked). The results are shown in Table S1. One can see from this table that the effect of 
polygenic score remains highly significant. 

How the SM model explains observed patterns in survival improvements over time. One of 
the key variables in the SM model is “vitality,” V(x), where x denotes age. The decline in vitality 
with age is described by a linear function and interpreted as a reduction in capacity to withstand 
stresses associated with aging: 

 )1()( 0 BxVxV  . (S4)  
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External disturbances or challenges to survival in the SM model are described by a 
Poisson-like stochastic process, which is characterized by two parameters: the frequency, K, and 
the average magnitude of stresses, D , respectively (here we follow the original notation by 
Strehler and Mildvan). The function V(x) is characterized by the intercept, or initial value of this 
index, V0, and the negative slope, V0B. The SM model represents parameters of the Gompertz 
mortality curve 0( ) exp( )x R x  (which typically gives a good fit to population patterns of 

human mortality rates between ages 30 and 85 years) in terms of V0, B, K, and D :  

 0 0exp( )R K V D  ;      0V B D  . (S5) 

In the framework of the SM model, the observed rectangularization pattern of survival 
improvement over time (first time period in Fig. 1A) can be explained by a decline in average 
magnitude of external stresses, D . The parallel shift of the entire survival curve to the right 
over time (second time period in Fig. 1A) can be explained by the decline in the frequency of 
external disturbances, K. This is because D , and K are the only parameters characterizing 
properties of external disturbances. Changes in V0 and B are not expected, because these 
parameters represent properties of individual genetic backgrounds, which require evolutionary 
time for significant changes. 

How the SM model explains differences in survival for groups of individuals with different 
genetic backgrounds. The explanations given above are not valid for the patterns shown in Fig. 
1B. This is because, instead of considering how changes in external conditions over time 
influence human survival, we consider how such survival is affected by differences in genetic 
parameters of individuals taken from the same population cohort (the original FHS cohort), and 
exposed to the same external conditions. Therefore, different age patterns of survival (mortality 
rates) for these sub-cohorts are likely to be associated with differences in the parameters V0 and 
B of the vitality function, V(x), which may reflect differences in the genetic backgrounds of the 
individuals comprising the respective sub-cohorts. The representation of the parameters of the 
Gompertz mortality curve given by eq. (S2) together with survival curves shown in Fig. 1B 
indicate that the rectangularization pattern of changes in survival, in this case, can be observed if 
the initial value of vitality, V0, increases when the number of longevity alleles carried by each 
study participants increases (see Figs. S2 and S3). In populations with such genetic backgrounds, 
the parameter B remains unchanged, so the rate of vitality decline (which is characterized by the 
product, V0B) increases.  

It is important to note that the SM correlation could be an artifact due to negligence of the 
Makeham baseline term in the Gompertz-Makeham model of mortality, when its value is not 
small compared to other component of mortality 13. To test whether this is the case in our 
situation we approximated mortality rates for each sub-population of individuals with different 
genetic background using the Gompertz-Makeham and Gompertz curves and compared 
parameters using the likelihood ratio test. The test showed that the Gompertz model provides 
better fit to the data from both populations. This means that the Makeham term is not responsible 
for SM correlation between the Gompertz parameters in case of genetic model of mortality. 

How saving lives transforms mortality rates. If, in some population experiencing mortality 
rate )(x , it would be possible to save individuals’ lives n times for everybody, then the 
mortality rate, )(x , would be transformed and become 14, 
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Characteristics of 39 SNPs. As Fig. S4 shows, call rate of most of 39 SNPs is over 95%, and 
there are only four SNPs with call rate below 90%. Although a general tendency in the literature 
is to make quality control (QC) procedure more stringent, e.g., to increase call rates, a number of 
studies used rather liberal values of these characteristics. For example, Cupples et al. 15 and 
Lunetta et al. 16 published GWAS analyses on longevity based on call rate >= 80%. A genome-
wide association study of breast and prostate cancer in the Framingham Heart Study was also 
based on call rate >= 80% 17. In our paper Yashin et al. 1 (where these 39 SNPs were selected) 
we adopted similar criteria to make our findings comparable with those of Lunetta et al. 16. Note 
that p-values of HWE test of 39 SNPs are between 0.0001 and 0.8549, and minor allele 
frequencies are between 14%-49%, which are within the current standards of the QC procedure. 

The presence of population stratification may contribute to errors in GWAS. Therefore 
we carefully investigated the situation with population stratification in the FHS data. Sebro et al. 
18 found evidence for ancestry-related assortative mating in the Framingham Heart Study 
participants and suggested the possibility of population stratification. However, Benjamin et al. 
19 concluded that evidence for considerable population stratification in the FHS data has not been 
detected. In earlier publication Wilk et al. 20 found no evidence for the presence of population 
stratification within FHS. Later Wilk et al. 21 confirmed this conclusion using the method based 
on principal components analysis in the EIGENSTRAT software. The authors found that none of 
the first ten components were statistically significant (p<0.05) suggesting that population 
substructure was unlikely to confound the population-based association analysis. Cupples et al. 15 
suspected that there is little population stratification in the FHS sample and Seshadri et al. 22 
concluded that population stratification is not a major concern in the FHS sample due to the high 
homogeneity of ancestry (European).   

 We performed Linkage Disequilibrium test of 39 SNPs with software WGAViewer 23 
and plotted distribution of LD values (r2) between any two SNPs (see Fig. S4). The maximum r2 
of 0.03 shows that 39 SNPs can be considered independent. Therefore, bias due to dependence 
between SNPs is not a major concern in our analyses. 

Note that GWAS allows for selecting genetic variants with both positive and negative 
effects on lifespan (“longevity” and “frailty” SNPs). Strictly speaking, both polygenic score 
indices constructed from “longevity” and “frailty” SNPs have to be used in evaluating joint 
effect of selected SNPs on lifespan. It turned out, however, that the numbers of detected genetic 
variants with positive and negative effects contained in persons’ genomes were highly negatively 
correlated in our analyses. This correlation can be explained by the allele selection process: 
individuals who have a large number of “frailty” alleles and a small number of “longevity” 
alleles (and vice-versa) are more likely to contribute to a negative (positive) estimate of genetic 
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influence on lifespan than those who have about equal numbers of such alleles. Because of such 
correlation, we evaluated joint effect of “longevity” alleles only.  
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Supplemental Tables: 
Table S1: The effect of polygenic score constructed from 39 SNPs on lifespan after controlling 

for smoking 

Variable Estimate S.E. t Value P-value 
Intercept 80.36752 0.51957 154.68 <.0001 
Polygenic score (39 SNPs) 0.39365 0.02412 16.32 <.0001 
Smoking -3.17152 0.40033 -7.92 <.0001 
 

Supplemental Figures: 

  

Fig. S1: Two indices explain about the same proportion of life span variance. (A) Life span as a 

function of additive genetic component (AGC index) evaluated for individuals from the original 

FHS cohort. Linear regression explains about 15% of phenotypic variance. (B) Life span as a 

function of the number of individually selected genetic variants (NLV index) contained in 

individuals’ genomes evaluated for individuals from the original FHS cohort. Linear regression 

shows “genetic dose – life span response” relationship and explains about 15% of life span 

variance. 
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Fig. S2: Vitality functions in the Strehler and Mildvan model. The blue lines correspond to 

changes in initial vitality, V0. When V0 increases and B is constant the absolute rate of vitality 

decline V0B increases. The vertical lines characterize external disturbances of different 

magnitudes occurring at random times x1, x2,… x6, T. Death occurs at age T when the magnitude of 

disturbance exceeds the value of vitality function. The death at age T can be avoided when initial 

vitality increases. The red line corresponds to simultaneous increase in V0 and decrease in B, so 

the slope of vitality function V0B does not change. 



34 

 

 

Fig. S3: Changes in the age patterns of the logarithms of mortality rates in response to 

modification of vitality. The blue lines correspond to changes in initial vitality, V0, when 

parameter B remains unchanged. An increase in V0 results in decline of the Gompertz parameter 

R0 and in an increase of α. Respective changes correspond to counter clockwise rotation of the 

logarithm of mortality rate )(x  around the point )ln,1( KB . The red line corresponds to the 

logarithm of the mortality rate resulted from an increase in V0 and simultaneous decline in B, so 

the absolute rate of vitality decline, V0B, remains unchanged. 
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Fig. S4: Distributions of different characteristics of 39 SNPs: (A) call rates; (B) Hardy-Weinberg 

equilibrium (HWE) p-values; (C) minor allele frequencies (MAF); (D) linkage disequilibrium 

(LD) values (r2). 
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Fig. S5: Survival curves (conditional at age 60) in the U.S. in 1933-2007: (A) females; (B) males 

(data source: Human Mortality Database). 
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Fig. S6: Life expectancy at birth in the U.S. in 1980-2007: (A) females; (B) males (data source: 

Human Mortality Database). Dots represent observed data; lines represent the fitted linear 

regressions. 
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Fig. S7: Sex-specific curves illustrating how saving lives contributes to explanations of mortality 

and survival improvement (see Fig. 4 for total population). (A) Logarithms of mortality rates for 

U.S. females in 1950 (open circles) and in 2007 (open triangles). The 1950 mortality rate is 

approximated by the Gompertz function with n = 0, where n is the number of times individual’s 

life has been saved. The other curves correspond to mortality rates obtained by transforming the 

1950 Gompertz mortality rate using the life saving equation with n = 1, 2, 3, 4, and 5. (B) 

Survival functions for U.S. females in 1950 (open circles) and in 2007 (open triangles). Three 

other survival curves correspond to mortality rates obtained by transforming the 1950 Gompertz 

curve using the life saving equation with n = 1, 2, and 3. (C) Logarithms of mortality rates for 
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U.S. males in 1950 and in 2007 (all notations are similar to (A)). (D) Survival functions for U.S. 

males in 1950 and in 2007 (all notations are similar to (B)). 

 

 


