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Abstract

Demographers often estimate population parameters by combining data from sepa-
rate sources. We propose a generalized method of moments (GMM) estimator for such
cases, and to illustrate this statistical approach we estimate mortality rates using data
from the U.S. Census and from the Vital Statistics. Specifically, we estimate mortality
rates by race, gender, birth cohort, and State of birth for cohorts born in the 1930s.
On a substantive level, resulting estimates are interesting: In mid-life (ages 40 through
60), State-of-birth effects are quite large for men, but not for women. Among both
black and white men, mortality is generally higher for individuals born in relatively
low-income States—typically Southern States.
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1 Introduction

The two most important sources for inference in demography are data from Census records,
and official Vital Statistics, which record key individual-level events such as births and
deaths. An important problem in empirical demography is how to optimally combine data
from such separate sources for the purpose of estimation.

In this paper we work through one example. The empirical issue we have in mind is a
typical problem in demography—the estimation of mortality rates for subsets of the pop-
ulation. In our case we are interested in studying differences in mortality that emerge in
mid-adulthood—at ages 40 through 60—by race, gender, and State of birth. Our focus
on the State of birth is potentially important if State-level variation in conditions affecting
prenatal and early childhood health has a meaningful impact on mid-life mortality.

One obvious, and useful, way to evaluate mortality rates by State of birth is to estimate
ten-year mortality rates using U.S. Census data, which include birth State as a data element.
For example, suppose we want to estimate middle-age mortality for black men born in
Georgia in 1932 (denoted here as group i) over the period 1980 through 1990. Let N0

i be
the count of individuals in this cohort in 1980, a Census year, and N1

i be the comparable
count from the following decennial Census, taken in 1990. Then (N0

i − N1
i )/N0

i is the ten-
year mortality rate (from, roughly, age 48 to 58). We do not have the detail needed to
estimate mortality with “short form” data (which covers the population); estimates must be
formed by using “long form” data, which merely sample the population. These samples are
generally 1-in-5 or 1-in-6 for restricted use data, and 1-in-20 or 1-in-100 for the Public Use
Microsamples (PUMS). Thus, to continue our example, if we wish to estimate middle-age
mortality for black men born in Georgia in 1932, we need to rely on samples: Letting S0

i

and S1
i denote samples from the PUMS, a natural estimator is (S0

i − S1
i )/S0

i . Indeed, this
estimator has been put to good use in such work as Lleras-Muney (2005).1

A clear problem with the approach outlined in the previous paragraph is that estimates
based on small samples, as with the cohort of black men born in Georgia in 1932, are likely
to be quite noisy. Indeed, when we turn to estimation below, due to sampling variation it is
quite common for such estimates to actually be negative.

We can easily improve on the accuracy of inferences by incorporating an additional data
source—data on deaths from the detailed mortality files. These data provide a presumably
highly accurate counting of deaths, and include sex, race, age, and State of birth for recorded
deaths. Thus, we could use these data to make an accurate assessment of the number of
deaths to black men born in Georgia in 1932 between 1980 and 1990. On their own, the data
cannot be used to estimate death rates, of course, because there is no base. Still, intuition
suggests that this information is useful for the purpose of inference in our context.

1Lleras-Muney uses the estimator for calculating cohort-specific mortality by birth State for white indi-
viduals, for the purpose of inferring the impact of State education policies on later-life mortality. Notice
that the estimator requires an additional assumption that there is no international out-migration or return-
migration for the group—an assumption that is probably fine for the example cohort (and, in any event,
can be checked with available data). Also, as discussed below, the estimator needs some modification if the
sample provided is weighted.
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Our problem, then, is how to optimally combine data from the three sources—the two
Census samples and Vital Statistics records—to estimate mortality rates by race, gender,
birth cohort, and State of birth.

In Section 2 of our paper we set out an intuitive minimum distance (MD) estimator,
and then generalize the solution to an easily-implemented two-step estimator—an optimal
generalized method of moments (GMM) estimator first proposed in the seminal work of
Hansen (1982). For interest sake, we also formulate a constrained maximum likelihood (ML)
estimator for the problem at hand and demonstrate a close relationship between the GMM
and ML approaches.

In Section 3 of our paper we turn to our substantive application. We estimate the
effect of birth State on middle-age mortality rates for black and white individuals born
in 15 States during the 1930s. We demonstrate the viability of the GMM approach, and
show how this approach substantially improves our ability to draw inferences, compared
to estimation using Census data only. Our estimates document substantial variation in
State-of-birth effects for men, especially black men, though not for women. We make an
additional empirical contribution to the literature on the social forces that impact mortality
by showing a negative relationship, at the level of State of birth, between mid-life mortality
and household income in childhood.

In Section 4 we provide concluding remarks.

2 Estimating Mortality Using Two Data Sources

Our problem is conceptually quite simple. Suppose that in period 0 we have a Census dataset
that randomly samples a population of N0 individuals using a known sampling rate, say 1
in ω0, resulting in a sample of S0 = N0/ω0 individuals. An example is the 1-in-20 public
use sample of the U.S. Census. In period 1 (10 years later in the case of the U.S. Decennial
Census) we similarly have a Census that samples at a rate of 1 in ω1, resulting in a sample of
S1 = N1/ω1 individuals. Our interest is the mortality rates of a subset i of the population,
for example selected on the basis of birth cohort, State of birth, gender, race, etc. Let S0

i be
the count of such individuals in year 0 and let S1

i be the corresponding count in year 1.
As we mention in the introduction, Census data alone are sufficient to estimate 10-year

mortality rates of interest here. The actual mortality rate for group i,

(N0
i −N1

i )

N0
i

,

can be estimated by
(ω0S0

i − ω1S1
i )

ω0S0
i

, (1)

if all individuals in the population are sampled at the same rates in each of the two periods,
i.e., if ω0 and ω1 are the appropriate “inflation factors” in the respective periods. Of course,
if inflation factors differ across individuals in the sample, our estimator is slightly more
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complicated. Now index all individuals with j and let j ∈ i indicate individuals in group i.
Then mortality is estimated by (∑

j∈i ω
0
j −

∑
j∈i ω

1
j

)
∑

j∈i ω
0
j

.

For the remainder of this section we restrict attention to the case given in (1). We present this
case because there is no additional insight that follows from allowing for differing inflation
weights, but there is considerable notational clutter.2

As we mention in the introduction, estimator (1) is likely to be quite noisy when samples
are small. We can do much better if we have a count from Vital Statistics data of the
number of individuals in group i who have died between time 0 and time 1. We let Di be
such a count, and suppose that it has been accurately recorded. Given that we have the
number of deaths in group i we can estimate the death rate using Di/(ω

0S0
i ), because ω0S0

i

is a consistent estimate of the number of people in group i alive in time 0 (given the 1-in-ω0

sample). This is likely to be a substantial improvement over the estimator in (1) because
here at least we have an accurate numerator.

We can potentially do better yet by exploiting a direct relationship between N0
i (e.g.,

the population of black men born in Georgia in 1932 observed in 1980) and N1
i (that same

population in 1990):
N0

i = N1
i +Di + Ei, (2)

where Ei is the net emigration of the group. For the United States during the last half of
the 20th century, Ei ≈ 0 for middle-aged individuals born in the U.S., so we could estimate
N0

i with either ω0S0
i , as in the previous paragraph, or with

ω1S1
i +Di. (3)

Either approach to estimating N0
i is likely to be noisy; intuitively, one would like to use both

pieces of information in forming inferences.3

Our problem, then, is to combine the data to find the best estimate of the number of
individuals of type i in time 0 for use in the denominator of our estimator, i.e., the consistent
estimator that minimizes asymptotic variance. We start with a simple, intuitively sensible
minimum distance estimator.

2.1 A Minimum Distance Estimator

In constructing our estimate of the size of the group i population, N0
i , we use the relationships

E
{
ω0S0

i −N0
i

}
= 0,

E{ω1S1
i +Di −N0

i } = 0. (4)

2When we turn to estimation, though, we have samples in which inflation factors differ across individuals,
so we use appropriate weights in forming estimates.

3Because Di comes from Vital Statistics records, it is precisely measured. The problem comes with
samples S0

i and S1
i , as they are small. (In practice, samples often become smaller as a cohort ages, of

course.)
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The expressions in (4), which involve expectations, are often called moment restrictions.4

Given that our goal is to find estimators that fit equations (4) “well,” an intuitively attractive

idea is to find value N̂0
i that minimizes the expression,

[
N0

i − ω0S0
i N0

i − ω1S1
i −Di

] [ 1 0
0 1

] [
N0

i − ω0S0
i

N0
i − ω1S1

i −Di

]
. (5)

To find this minimum distance estimator, we simply solve the problem,

min
N0

i

V =
(
N0

i − ω0S0
i

)2
+
(
N0

i − ω1S1
i −Di

)2
. (6)

V is a strictly convex function of N0
i that has a first-order condition,

dV

dN0
i

= 2
(
N̂0

i − ω0S0
i

)
+ 2

(
N̂0

i − ω1S1
i −Di

)
= 0, (7)

which leads to the resulting estimator,

N̂0
i =

1

2

(
ω0S0

i

)
+

1

2

(
ω1S1

i +Di

)
. (8)

The minimum distance estimator is simply the average of the two potential Census estimators
proposed above. Because the samples are approximately independent (only about 0.0025 of
the population will appear in two consecutive 1-in-20 PUMS), we stand to gain a great deal
of efficiency by using two samples to construct our estimate of N0

i .
With our estimator of N0

i in place we can easily construct our parameter estimate of
interest. Let di be the mortality rate for group i between time 0 and time 1. Our estimator
of this object, based on the minimum distance (MD) approach, is simply

dMD
i =

Di

N̂0
i

, (9)

i.e., the ratio of the observed deaths to our minimum distance estimate of the number of
people in group i who were alive at time 0.

This clearly is a consistent estimator, and it has the advantage of using all available
data in a simple and coherent way. The estimator is easy to implement, e.g., with simple
commands in any statistical package or spreadsheet program. Furthermore, as we show
below, the estimator works well in our application. An important paper by Hansen (1982),
though, establishes a generalization of the minimum distance estimator that has optimal
properties, in terms of minimizing the estimator’s asymptotic variance. We turn to that
estimator next.

4Our restrictions assume that Di, the death counts for individuals in group i, have been accurately
recorded in Vital Statistics records. If this number is thought to be recorded with error, and the error
process can be modeled, we would instead have three moment restrictions.
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2.2 A GMM Estimator

The idea of Hansen’s generalized method of moments (GMM) estimator is to undertake a
minimization exercise, such as the one given in (5), but in which the matrix in the interior
of (5) is not the identity matrix, but rather a 2× 2 symmetric matrix, W−1, the inverse of
the covariance matrix from the vector of “moment restrictions,” which in our case is

W = E

{[
N0

i − ω0S0
i

N0
i − ω1S1

i −Di

] [
N0

i − ω0S0
i N0

i − ω1S1
i −Di

]}
=

[
(ω0)

2
S0p0

i (1− p0
i ) 0

0 (ω1)
2
S1p1

i (1− p1
i )

]
, (10)

where p0
i and p1

i are, respectively, the probability in period 0 that an observation from the
complete sample S0 is a member of group i, and the analogous probability in period 1.5 The
terms in W are easy to find as our particular problem entails draws from two independent
binomial processes.6 Hansen proves that the use of W−1 is optimal in terms of minimizing
the asymptotic variance of the estimator.

Since we don’t know the values of [p0
i , p

1
i ] in advance, we cannot simply substitute W−1

for the 2 × 2 identity matrix in equation (5), and proceed with the minimization problem.
Instead, Hansen (1982) suggests a two-step estimator. The first step is the simple minimum
distance estimation given in 2.1. The idea is to use the estimator in (8) to consistently
estimate [p0

i , p
1
i ], and to use those to estimate the covariance matrix. Thus we form Ŵ−1

using equation (10), but replacing each p0
i and p1

i with our estimates, p̂0
i and p̂1

i . The second

step then entails finding the value
ˆ̂
N0

i that minimizes[
ˆ̂
N0

i − ω0S0
i

ˆ̂
N0

i − ω1S1
i −Di

] [ (ω0)2S0p̂0
i (1− p̂0

i ) 0
0 (ω1)2S1p̂1

i (1− p̂1
i )

]−1

× ˆ̂
N0

i − ω0S0
i

ˆ̂
N0

i − ω1S1
i −Di

 , (11)

which yields the necessary condition,

(
(ω0)2S0p̂0

i (1− p̂0
i )
)−1
(

ˆ̂
N0

i − ω0S0
i

)
+
(
(ω1)2S1p̂1

i (1− p̂1
i )
)−1
(

ˆ̂
N0

i − ω1S1
i −Di

)
= 0. (12)

5Put another way, p0i =
N0

i

N0 and p1i =
N1

i

N1 . We of course don’t directly observe p0i or p1i , since N0
i and N1

i

are unknown.
6Conceptually, the Census finds the entire population, and samples a fraction of these individuals for

public use releases. Then, for example, in period 0 each of these individuals has a p0i probability of belonging
to group i and a 1−p0i probability of being in some other group. Estimates of the first moment have variance
S0p0i (1− p0i ).
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Following a series of algebraic steps we can show that the resulting estimator is

ˆ̂
N0

i =

[
((ω0)2S0p̂0

i (1− p̂0
i ))
−1

((ω0)2S0p̂0
i (1− p̂0

i ))
−1

+ ((ω1)2S1p̂1
i (1− p̂1

i ))
−1

]
ω0S0

i

+

[
((ω1)2S1p̂1

i (1− p̂1
i ))
−1

((ω0)2S0p̂0
i (1− p̂0

i ))
−1

+ ((ω1)2S1p̂1
i (1− p̂1

i ))
−1

] (
ω1S1

i +Di

)
. (13)

As in (8), we are using a weighted sum of two consistent estimators of N0
i for our estimator,

but in the GMM case we use asymptotically optimal weights, which include objects that are
estimated in the first stage of the estimation procedure.

Finally, having found the GMM estimate of N0
i , our estimate of the mortality rate for

group i from time 0 to time 1, based on the GMM approach, is

dGMM
i =

Di

ˆ̂
N0

i

. (14)

To build intuition for this estimator, consider the case in which the inflation weights are
the same in the two samples and the population size is the same in periods 0 and 1. Then
(13) reduces to

ˆ̂
N0

i =

[
(p̂0

i (1− p̂0
i ))
−1

(p̂0
i (1− p̂0

i ))
−1

+ (p̂1
i (1− p̂1

i ))
−1

]
ω0S0

i

+

[
(p̂1

i (1− p̂1
i ))
−1

(p̂0
i (1− p̂0

i ))
−1

+ (p̂1
i (1− p̂1

i ))
−1

] (
ω1S1

i +Di

)
.

Now consider two cases. First suppose p̂0
i ≈ p̂1

i . This will be true when the mortality rate
is very low. In this case, the weights (in brackets) are approximately 1

2
; the two estimates

of N0
i are given roughly equal weight. Next, consider the opposite case, in which p̂1

i has
declined nearly to 0. This happens when the cohort has nearly become extinct, which would
be most common at very old ages. In this case, the GMM estimator places a weight slightly
less than 1 on the second term, and a weight slightly greater than 0 on the first term.

The second case shows that the GMM estimate, in the extreme case, converges to “ex-
tinct generation estimation”—a methodology used in many important papers, e.g., Elo and
Preston (1994).7 The intuition is straightforward. If death counts from Vital Statistics are
accurate, for an extinct cohort we can estimate the number of people in the cohort who were
alive in a prior period simply by counting recorded deaths. When a cohort near extinction,
S1
i approaches 0 (and will be much smaller than Di), and so the GMM procedure effectively

places progressively higher weight on the death counts, relative to Census samples, as a
means of determining the base with which to estimate mortality (in (14)).

As an alternative to GMM, researchers could calculate mortality by estimating the base
from the Census in period 0 (ignoring information from period 1), while estimating the

7Elo and Preston provide reference to Vincent’s (1951) seminal use of this method.
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numerator using Vital Statistics data. Our analysis shows that such a weighting scheme is
sub-optimal, and deviates from optimality dramatically when mortality rates are high.8

2.3 Comparison to the Maximum Likelihood Estimator

Hansen (1982) establishes the optimal properties of the GMM estimator among the class of
method of moments estimators. However, GMM estimation is not familiar in demographic
research, so many readers might find it helpful to compare the GMM approach to the more
familiar idea of maximum likelihood (ML).

As we have seen, our problem boils down to estimating the fraction of the population
that is in group i in time 0, which we designate p0

i . To set the stage, recall that if one wanted
to estimate that parameter using ML based solely on Census data in time 0, the goal would
be to choose the estimator that maximizes the log of

L =
S0!

S0
i !(S

0 − S0
i )!
p0
i
S0
i (1− p0

i )
(S0−S0

i )
. (15)

The ML estimator is easily found here by taking the derivative of the log likelihood with
respect to p0

i and setting to 0. The resulting estimator is the mean, p̃0
i = S0

i /S
0.

Our ML problem, incorporating data from both the Census and from Vital Statistics, is
a bit harder. In this case we want to maximize the joint log likelihood of p0

i and p1
i , given by

ln
[
p0
i
S0
i (1− p0

i )
(S0−S0

i )
]

+ ln

[
p1
i
S1
i (1− p1

i )
(S1−S1

i )
]

+ C (16)

(where C is a constant that is independent of the parameters), subject to the constraint

ω0p0
iS

0 − ω1p1
iS

1 −Di = 0. (17)

Carrying out the constrained maximization problem, and following an extensive series of
algebraic steps, we can show that the ML estimates are the values, p̃0

i and p̃1
i , that solve

ω0p̃0
iS

0 − ω1p̃1
iS

1 −Di = 0, (18)

1

ω0S0p̃0
i (1− p̃0

i )

[
p̃0
iS

0 − S0
i

]
+

1

ω1S1p̃1
i (1− p̃1

i )

[
p̃1
iS

1 − S1
i

]
= 0. (19)

Below we use numerical methods to solve (18) and (19) to form ML estimates. Then with
the estimates of p0

i , we proceed to estimate mortality using

dML
i =

Di

p̃i0N0
, (20)

8As Shiro Horiuchi pointed out to us, in terms of the previous literature, we are essentially combining
“forward” and “backward” methods for estimating mortality (see, e.g., Bennett and Horiuchi, 1981, for a
discussion of classical methods in indirect estimation, with a focus on problems that arise when deaths are
under-registered).
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where p̃i
0N0 serves to estimate N0

i (the denominator for the estimator) for each demographic
group.

Our interest here is the comparison of the ML estimator to the GMM procedure outlined
above. Recall that the GMM estimator of N0

i is a two step estimator in which one first gets
the minimum distance estimators, N̂0

i and N̂1
i , and uses those to find p̂0

i and p̂1
i . These values

are then used in a second stage, using equation (13), to find the second-stage estimator of
N0

i . In principle one could similarly find a second-stage estimate of N1
i , and then use those

second-stage estimators to get updated estimates of p0
i and p1

i . These new estimates could
again be used in (13) to get third-stage estimators. The process could be repeated in a fourth
stage, and so on, until the exercise converges to fixed points, say p̌0

i and p̌1
i . Suppose such fixed

points satisfy (13), but now with Ň0
i = p̌0

iN
0 on the left-hand side, and with p̌0

i replacing
p̂0
i and p̌1

i replacing p̂1
i on the right-hand side. Following many algebraic manipulations, we

find that these “iterated GMM” estimates must then also solve

ω0p̌0
iS

0 − ω1p̌1
iS

1 −Di = 0, (21)

1

ω0S0p̌0
i (1− p̌0

i )

[
p̌0
iS

0 − S0
i

]
+

1

ω1S1p̌1
i (1− p̌1

i )

[
p̌1
iS

1 − S1
i

]
= 0. (22)

Notice that the solution for iterated GMM, (21) and (22), takes precisely the same form as
the equations that solve ML, (18) and (19); if we were to take the two-step GMM procedure
and iterate as an n-step procedure we would converge to the ML estimates. In short, GMM
can be thought of here as the first two steps in an iterative process that solves ML.

As Hayashi (2000) notes (see pages 481-482), in general GMM is less efficient than ML.
The exception is in such cases as ours—when one can exploit knowledge of the parametric
form of the density function in forming the weighting matrix W−1. While MLE is a sensible
method to use for our problem, both ML and GMM are asymptotically efficient, and the
GMM approach is considerably easier to implement.

As for the minimum distance (MD) estimator, it is consistent but not efficient. It is,
however, simpler even than GMM, and in our example below it works extremely well.9

3 Application: The Role of Birth State in Shaping

Adult Mortality

3.1 The Research Question and Basic Empirical Strategy

Our application entails the estimation and analysis of mortality in mid-life—ages approxi-
mately 40 to 60—by sex, race, and birth State, for people born during the 1930s. To put
this work in context, we mention two important strands of literature.

9Altongi and Segal (1996) show that MD can have better small sample properties than GMM, though
their concerns are not applicable in our context. In our application (which does entail relatively small samples
in some instances) GMM and ML estimates are nearly indistinguishable, and in turn the MD estimates are
very similar to those estimates.
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First, a vast literature focuses on black-white disparities in health outcomes—including
mortality—in the twentieth century. Measured in terms of life expectancy, racial disparity
has decreased over the century, but remains high. According to recent life tables produced
at the Division of Vital Statistics (Arias, 2010), the gap in life expectancy at birth between
whites and blacks born in the U.S. declined from 10.4 years for cohorts born 1919-1921 (with
life expectancies of 57.4 for whites and 47.0 for blacks) to a historic low of 5.0 for the cohort
born in 2006 (78.2 for whites and 73.2 for blacks).10

There are many proximate medical causes for the mortality gap, including black-white
disadvantages in mortality due to diseases of the heart, cancer, cerebrovascular disease,
diabetes mellitus, and pneumonia and influenza (e.g., Levine, et al., 2001). Importantly, for
our purposes, the incidence of life-threatening disease (and other threats, such as violence)
varies substantially across local areas in the U.S. For example, in a seminal paper, McCord
and Freeman (1990) estimated the rate of survival beyond the age of 40 for black men in
Harlem, circa 1960-1980, to be lower than for men in Bangladesh. Geronimus, Bound, and
Colen (2011) provide more recent location-specific statistics, by race, for a geographically
diverse set of locations, and similarly demonstrate high variation in mortality rates, and in
black-white differences in mortality rates, across locations.11

A second important literature focuses on the “long reach” of health threats in early child-
hood and in utero (Barker, 1990 and 1995), particularly conditions of nutritional deficiencies
during these crucial periods of human physical development. This idea plays an important
role, for example, in Fogel’s (2004) analysis of the long-run decline in mortality, and is ana-
lyzed in a great many important studies. More generally, deprivation in childhood can lead
to poor health outcomes later in life via a number of potential behavioral mechanisms related
to the intergenerational transmission of socio-economic wellbeing.

Some of the research on the role of early-childhood circumstances on later-life mortality
focuses specifically on the African American population. For instance, even using a relatively
small sample of 582 older African Americans, Preston, Hill, and Drevenstedt (1998) were able
to show that children who were exposed to the most unhealthy childhood environments were
less likely to reach age 85 than those living in more favorable environments. In their study,
mortality risks at young ages and mortality risks at older ages are shown to be positively
correlated for this population, suggesting that assaults on health early in life adversely
affect mortality at all subsequent ages for the population. Similarly, Hayward and Gorman
(2004) study associations between childhood socioeconomic conditions and men’s mortality,
and Warner and Hayward (2006) who assess the extent to which childhood and adulthood
conditions account for the race gap in men’s mortality.12

10These estimates are from period life tables, which calculate life expectancy for a hypothetical cohort
that experiences current rates of age-specific mortality throughout its lifetime.

11A major challenge in this literature is its difficulty in sorting out the extent to which bad environmental
factors within high-mortality locations cause poor health, or conversely, people who have better resources
and better health avoid such neighborhoods.

12See also work by Costa, et al. (2007), showing that black men in the early twentieth century have higher
incidence of infectious disease, leading them to have higher prevalence rates of chronic conditions, such as
arteriosclerosis, at older ages.
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Against this backdrop, there is clear value in being able to evaluate variation in later-life
health outcomes conditional on one’s location of birth. There is a small literature on this
topic. Fang, et al. (1996), for example, explore the high rate of mortality from cardiovascular
causes among blacks in New York City, finding that there is substantial variation among
blacks based on their place of birth. In particular, Southern-born blacks had higher rates
of mortality from cardiovascular disease than those of their Northeastern-born counterparts.
Greenberg and Schneider (1992), as another example, examine black mortality by place of
birth and residence. That paper suggests that blacks who migrated from the South had
higher mortality rates than blacks born in other regions in the United States.

Given this literature, it seems likely that mortality in adulthood might vary by State of
birth in interesting and important ways. As we have mentioned, our focus is on black and
white individuals born during the 1930s. We then assess 10-year mortality rates for these
individuals for 1980 through 1990. Thus we are looking at mortality in the mid-life (at ages
approximately 40 through 60).13 By focusing on cohorts born in the 1930s, we are studying
individuals who were born during the Great Depression—an era of great deprivation in many
U.S. States. With credible estimates of mid-life mortality rates, generated using our GMM
approach, we can begin to ask such basic questions as, “Is mid-life mortality higher among
those born in States that had relatively high rates of childhood poverty?”

As for the States we study, we note that as of the 1930s, most African Americans were
born in the Southern States, so we include the nine largest States in terms of births of black
individuals. For comparison, we include six large Northern States. As we will see, there are
substantial challenges to estimating mortality among black men and women in these latter
States because of the relatively smaller sample sizes in the Census.

In Section 3.2 we focus on methodology—comparing estimates using the various methods
we have described above—and then in Sections 3.3 and 3.4 we give substantive results about
the role of State of birth in shaping mortality in mid-life among cohorts of black and white
individuals born in the 1930s.

3.2 Mortality Estimates by Birth State for Individuals Born 1930–
1939: A Comparison of Four Estimators

Our goal in this first section of empirical results is to compare estimates of mortality using
the four estimators mentioned in our methodological section: (1) the estimator based on
Census data only, e.g., as used by Lleras-Muney (2005), and the additional estimators that
use both Census and Vital Statistics data, as discussed above, i.e. (2) the MD estimator, (3)
the GMM estimator, and (4) the ML estimator.

Given that we are estimating mortality in State of birth × sex × race × birth cohort cells,
in many cases we are estimating mortality on the basis of relatively small samples. With

13Of course our methodology could be applied to the study of mortality at younger ages and at older ages
as well—both of which are interesting. One reason we do not study mortality at younger ages for our cohorts
of study is a lack of consistently reported data on State of birth in available death records prior to 1978.
Researchers who look at black-white mortality at older ages would do well to consider age reporting issues
raised by Preston, et al. (1999).
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this in mind, consider estimates for New York, presented in graphical form in Figure 1. The
panels provide four sets estimates of the 10-year mortality rate, from 1980 through 1990, for
the birth cohorts 1930–1939.

Estimates based on Census data along are extremely noisy—so noisy that it would be
difficult to draw inferences about the extent to which mortality varies by birth cohort, gender,
or race. The variability in estimates is especially great for black men and women. This makes
sense, since these estimates are based on smaller samples than for white men and women. By
way of comparison, the ML, MD, and GMM approaches provide extremely similar estimates,
and these estimates are sensible. Mortality rates are lower for the more recent cohorts than
for earlier cohorts, they are lower for women than for men, and they are lower for whites
than for blacks.

Our primary purpose in producing mortality estimates is to make comparisons across
State of birth, gender, and race. For this purpose, MD, GMM, and ML estimates—based on
Census and Vital Statistics data—prove to be much more useful than the noisier counterparts
drawn from the Census data alone. To establish this point, we begin with one demographic
group, black men, and for that group estimate the following regression:

ln(dcs) = αc + βs + εcs, (23)

where c indicates birth cohort (c = 1930, . . . , 1939), and s indicates State. As noted above,
we use 15 States—the 9 Southern States where the most African Americans were born in
the 1930s, as well as 6 large comparison States from the North.14

In short, we are estimating the impact of State of birth on log ten-year mortality rates in
a regression model that has a full set of birth cohort effects for black men born 1930–1939.
As for the State-of-birth effects, for ease of interpretation we normalize them to average 0.15

Column (1) of Table 1 shows estimated State effects for our regression if we use estimates
of mortality with Census data only, taken from the 1980 and 1990 public use samples.
Standard errors are very large; the evidence does not allow us to draw firm conclusions
about the importance of State of birth on later-life mortality for our population. This result
is not surprising. As illustrated in Figures 1, our dependent variable here is being estimated
with a great deal of noise. As it turns out, our mortality measures are so noisy that we simply
cannot draw useful inferences about the role of birth State in shaping later-life mortality for
African American men.

Columns (2) through (4) of Table 1 then shows estimated State effects from our regression
when we use estimates of mortality using Census and Vital Records data, using, respectively,
MD, GMM, and ML procedures. In contrast to results reported in Column (1) of Table 1,
in these columns we find very interesting results. We notice that estimated State-of-birth
effects are quite precisely estimated. Also, the MD, GMM, and ML approaches give very

14In terms of the notation in the previous section, demographic “group i” is now a single cell given by c
and s (e.g., black men born in 1932 in Georgia). We have n = 150 groups: 10 cohorts × 15 States.

15Following Haisken-DeNew and Schmidt (1997) and subsequent authors, such as Kovak (2011), we norm
the State effects to average 0. Specifically, the estimated State coefficients are re-normed from a first-step
standard regression, expressing the results as deviation from a weighted average (with equal weight across
States).
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similar answers. Indeed the correlation between estimated coefficients using MD and GMM
approaches exceeds 0.999, and the correlation between estimated coefficients using ML and
GMM approaches is greater than 0.998.

To conclude our comparison of estimators, we recall that there is yet another way of
combining data from the Census and Vital Statistics to calculate 10-year mortality rates: we
could simply estimate the base from the 1980 Census data alone, and the deaths from Vital
Statistics records. Notice that we are thereby giving zero weight to information available
from the 1990 Census data, and as noted above, this is sub-optimal. Still, this is a simple
and well-used estimator, and to get a sense of how such estimates compare to our GMM
estimates, we calculated 10-year mortality for all 50 States of birth plus DC by sex × race ×
birth cohort cells for the 1930-1939 cohorts under study. If we restrict attention to the 1685
cells that have an initial sample size greater than 100, the two estimators give reasonably
similar answers: the correlation between the estimates is 0.972. However, for the 235 cells
with 100 or fewer observations, the correlation is only 0.748.16 Our theory shows why we are
better off with the GMM approach, and this investigation shows, not surprisingly, that the
advantages to GMM are most important when we have smaller samples.

For the remainder of our empirical work we use the GMM approach, which is attractive
for both its simplicity and optimal asymptotic properties.

3.3 Birth-State Effects for Mid-Life Mortality

We proceed with our analysis of mortality focusing first on men. Panel A of Table 2 shows
that for the 1930-1939 cohorts, ten-year mortality, 1980 to 1990, was approximately twice
as high for black men as white men; mortality was 140 per 1000 for blacks and 69 per
1000 for whites. In first set of columns in Panel B, we again report results using GMM
estimates for State effects given in column (3) of Table 1, but now order States from lowest
to highest mortality according to these GMM estimates. Our results indicate substantial
variation across States in the ten-year mortality rates for black men. For example, the
ten-year mortality rate is 18 log points higher than the 15-State average for men born in
South Carolina, while it is more than 19 log points lower than the average for those born
in Ohio.17 Every statistically significant positive State effect is for a Southern State, while
every statistically significant negative State effect is for a Northern State.

A major interest is the comparison of mortality patterns for the black and white popula-
tions. So in right-hand columns of Table 2, we repeat the analysis for the white population.
The variation across States is lower for white men than for black men, but the general pattern
is similar. Every Southern State has a positive estimated coefficient, while every Northern
State has a negative estimated coefficient.

Table 3 repeats our exercise, but for women. Mortality rates are much lower for women
than for men, but as with men, mid-life mortality rates are substantially higher among blacks

16Overall the unweighted correlation is 0.889. (In all calculations we exclude cases for which initial cell
sizes were 0, which leaves 1920 cells overall.)

17Log points are quite close to percentages, so those born in South Carolina have mortality rates that are
approximately 18 percent above the average.
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than whites. As for State effects, patterns are quite different for women than for men. For
black women, mortality is approximately 12 percent higher than average for those born in
Georgia and is approximately 9 percent higher for those born in South Carolina. Otherwise,
estimated State effects do not significantly differ from 0. For white women, State effects are
quite precisely estimated and several estimates are significantly different than 0. However,
the variation in estimated State effects is quite small, and we do not observe the distinctive
South-North pattern in estimated coefficients that observed for white men (in Table 2).

3.4 The Relationship Between Mid-Life Mortality and Birth-State
Childhood Conditions

The primary purpose of our paper is to introduce GMM estimation for the purpose of
estimating mortality from multiple sources, and to demonstrate its use in one application.
Having calculating mid-life mortality for the 1930-1939 cohorts by State of birth, though, we
proceed in this section to provide an example of how statistics of the sort we generate can be
used for further analysis. The idea here is to see if mid-life mortality measured by State of
birth is correlated with State-level average household conditions for these individuals when
they were children.

As a first step we use data from the 1940 U.S. Census to examine State-level characteris-
tics of households that had children aged 1-10, i.e., children born 1930-1939. We undertake
this exercise for black households and white households. Results are given in Table 4.

Column (1) gives household income. To adjust for inflation to 2011 buying power in
the usual way—using the consumer price index (CPI) adjustment from the Bureau of Labor
Statistics—one can multiply by 16.12. Undertaking this exercise underscores that at the
end of the Great Depression young children typically lived in households with very low
income. For example, the inflation-adjusted annual household income for black children
born in Mississippi (the poorest households) is only $2,628. The highest-income households
are whites in New Jersey, with an inflation-adjusted average income of $26,635. Notice that
there was extremely high variation across States and races in household income.

Column (2) gives household income per household member. This figure is especially
low for black children born in Mississippi, Georgia, and South Carolina; in these States the
inflation-adjusted income per household member was on the order of $1,000. At the other
extreme, white children in New York and New Jersey lived in households with inflation-
adjusted income per household member equal to approximately $6,000.

Finally, column (3) gives the average years of schooling for the household head for the
households we examine. These education measures are very low for blacks in Southern States,
especially such States as Louisiana, Georgia, and South Carolina. Average education was
generally highest for whites in Northern States.

Table 5 presents coefficient estimates from State-level regressions that specify log of the
10-year death rate to be a function of cohort fixed effects and household characteristics
measured in 1940:

ln(dcs) = γc + βxs + εcs, (24)
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for cohorts c = 1930, 1931, . . . , 1939, where xs is the relevant State-level measure of household
characteristics. We estimate this regression separately for men and women, and also then
separately by race. We enter the State-level characteristics as (1) the natural logarithm
of household income, (2) the log of household income per person in the household, and
(3) schooling of the household head, and we do so in three separate regressions. In all cases
we estimate standard errors by clustering at the State level.

Results are not statistically significant for women. Given estimates presented in Ta-
ble 3, this is not surprising; variation in mid-life mortality across birth State is not large for
women. For men, on the other hand, mortality is seen to be negatively correlated with the
household income and education measures. This is true for both black and white men. For
the household income measures we have a log-log specification, so the estimate coefficients
are elasticities. Thus, we see that a 10 percent increase in childhood household income per
household member is associate with a 1.38 percent decrease in mid-life mortality for black
men and a 2.31 percent decrease in mid-life mortality for white men.

Additional steps in analyzing these results might take any number of directions. For
example, it would be important to examine cause of death as a means of establishing potential
causal pathways.18 Particularly important in this endeavor would be an effort to understand
why State-level childhood characteristics seem to be important for mid-life mortality rates
of men but not women. A second line of inquiry might include efforts to examine the role of
the Great Migration for black men and women, and to examine patterns of rural-to-urban
migration for the population generally. Yet another use for these data would be to look at
how State-level health and education policies might have affected subsequent mortality.

Of course, future analyses could examine annual mortality rates (instead of 10-year mor-
tality rates), and do so for more years than we have thus far studied. Also, it would be
valuable to look at earlier and later cohorts.19

4 Conclusion

This paper establishes a simple GMM estimator for the purposes of drawing statistical
inference when demographers combine data from two sources. To our knowledge, this is the
first application of GMM statistical procedures for the purpose of demographic estimation.

We develop an example that demonstrates the estimator, and we compare inferences with
better-known maximum likelihood (ML) methodology. Asymptotic properties are the same
for the GMM and ML estimators, and in our application results are nearly identical, but
GMM estimation is much easier to implement.

Our application is a potentially valuable one. We are able to estimate, quite accurately,
mid-life mortality rates for blacks and whites by gender, birth cohort, and birth States for
cohorts born during the Great Depression. We find that among men there is interesting and
important variation: men born in the South have generally higher mortality than men born

18Note that our GMM estimation procedure would potentially be very valuable for this purpose.
19One challenge for researchers who want to study black-white mortality differences at old ages using

U.S. Census data is properly accounting for age misreporting. See, e.g., Preston, Elo, and Stewart (1999).

15



in the North, and birth-State variation is especially for African American men. For men,
mid-life mortality is negatively correlated with the socio-economic status of households in
the individuals’ birth States. In contrast, there are only modest birth-State differences in
mid-life mortality rates for women.

As we have mentioned, natural future use of GMM estimation might include the exam-
ination of mortality by race, gender, and birth State over more States, more cohorts, and
more ages. Also, these methods would be useful for analyses that look at death rates by
cause of death.

More generally, GMM procedures are potentially useful for estimating other objects of in-
terest in demography—fertility rates, marriage rates, migration, etc.—or for conducting data
validation when more than one data source is available to estimate a population parameter.
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Figure 1: Ten-Year Mortality Rates, 1980 to 1990, for New York, by Cohort (1930–1939)
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Source: Authors’ calculations, data from 1980 and 1990 Census and Vital Statistics.
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Table 1: Ten-Year Mortality (1980-1990) by Birth State, Black Men Born 1930-1939: Com-
parison of State Effects Using Four Estimates

State (S indicates (1) Estimates Using (2) Estimates (3) Estimates (4) Estimates
South, and N North) Census Data Using MD Using GMM Using ML

Alabama (S) -0.1528 -0.0039 -0.0043 -0.0076
(0.2919) (0.0158) (0.0161) (0.0157)

Arkansas (S) -0.0865 0.0223 0.0208 0.0217
(0.1363) (0.0167) (0.0164) (0.0168)

Georgia (S) -0.1353 0.1357 0.1359 0.1326
(0.2420) (0.0152) (0.0147) (0.0147)

Illinois (N) 0.0808 -0.0294 -0.0285 -0.0260
(0.3617) (0.0228) (0.0231) (0.0217)

Indiana (N) 0.9419 -0.1624 -0.1611 -0.1398
(0.2482) (0.0550) (0.0550) (0.0550)

Louisiana (S) 0.1526 -0.0161 -0.0144 -0.0197
(0.1617) (0.0190) (0.0195) (0.0193)

Mississippi (S) -0.1092 0.0496 0.0493 0.0500
(0.1975) (0.0172) (0.0173) (0.0156)

New Jersey (N) 0.2734 0.0074 0.0077 0.0073
(0.2219) (0.0223) (0.0235) (0.0206)

New York (N) -0.0149 -0.0478 -0.0468 -0.0508
(0.2055) (0.0244) (0.0243) (0.0244)

North Carolina (S) 0.1357 0.0995 0.0999 0.0950
(0.1611) (0.0196) (0.0197) (0.0196)

Ohio (N) -0.1618 -0.1978 -0.1974 -0.2007
(0.2235) (0.0405) (0.0405) (0.0403)

Pennsylvania (N) 0.0676 -0.0720 -0.0718 -0.0749
(0.1797) (0.0214) (0.0216) (0.0212)

South Carolina (S) -0.1854 0.1836 0.1820 0.1810
(0.2677) (0.0106) (0.0110) (0.0095)

Tennessee (S) -0.2442 0.0366 0.0355 0.0363
(0.2130) (0.0278) (0.0280) (0.0274)

Virginia (S) -0.5620 -0.0053 -0.0068 -0.0044
(0.4344) (0.0174) (0.0173) (0.0185)

Note: Authors’ calculations using U.S. Census data, 1980 and 1990, and Vital Statistics data.
Mortality in each cohort is first calculated as described in the text. Log of mortality is the
dependent variable in a regression that includes cohort indicator variables, and State indicator
variables. State effects, normed to average 0, and are reported here. Standard errors are in
parentheses. n = 150 (15 States and 10 cohorts).
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Table 2: Ten-Year Mortality (1980-1990) by Birth State, Men Born 1930-1939

A. Deaths per 1000

Blacks Whites

140 69

B. State Effects

Blacks Whites

South Carolina (S) 0.1820 South Carolina (S) 0.1123
(0.0110) (0.0121)

Georgia (S) 0.1359 Mississippi (S) 0.1044
(0.0147) (0.0136)

North Carolina (S) 0.0999 Georgia (S) 0.0976
(0.0197) (0.0128)

Mississippi (S) 0.0493 Alabama (S) 0.0937
(0.0173) (0.0120)

Tennessee (S) 0.0355 Tennessee (S) 0.0862
(0.0280) (0.0066)

Arkansas (S) 0.0208 North Carolina (S) 0.0594
(0.0164) (0.0117)

New Jersey (N) 0.0077 Virginia (S) 0.0506
(0.0235) (0.0120)

Alabama (S) -0.0043 Arkansas (S) 0.0406
(0.0161) (0.0102)

Virginia (S) -0.0068 Louisiana (S) 0.0029
(0.0173) (0.0135)

Louisiana (S) -0.0144 New York (N) -0.0973
(0.0195) (0.0098)

Illinois (N) -0.0285 Pennsylvania (N) -0.1034
(0.0231) (0.0112)

New York (N) -0.0468 New Jersey (N) -0.1037
(0.0243) (0.0084)

Pennsylvania (N) -0.0718 Indiana (N) -0.1112
(0.0216) (0.0080)

Indiana (N) -0.1611 Ohio (N) -0.1113
(0.0550) (0.0096)

Ohio (N) -0.1974 Illinois (N) -0.1206
(0.0405) (0.0062)

Note: Authors’ calculations, U.S. Census data from 1980 and 1990, and Vital Statistics from
1980–1990. Mortality in each cohort is first calculated using GMM (as described in the text). Log
of mortality is the dependent variable in a regression that includes cohort indicator variables, and
State indicator variables. State effects, normed to average 0, and are reported here. Standard
errors are in parentheses. n = 150 in each regression.
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Table 3: Ten-Year Mortality (1980-1990) by Birth State, Women Born 1930-1939

A. Deaths per 1000

Blacks Whites

74 39

B. State Effects

Blacks Whites

Georgia (S) 0.1229 Georgia (S) 0.0528
(0.0222) (0.0116)

South Carolina (S) 0.0897 Alabama (S) 0.0456
(0.0179) (0.0133)

Pennsylvania (N) 0.0266 New York (N) 0.0382
(0.0213) (0.0077)

Tennessee (S) 0.0208 Arkansas (S) 0.0217
(0.0181) (0.0160)

Ohio (N) 0.0052 South Carolina (S) 0.0172
(0.0358) (0.0188)

Mississippi (S) 0.0022 Virginia (S) 0.0149
(0.0143) (0.0097)

Arkansas (S) 0.0010 Tennessee (S) 0.0096
(0.0261) (0.0113)

Louisiana (S) -0.0114 Illinois (N) 0.0012
(0.0234) (0.0069)

North Carolina (S) -0.0235 Mississippi (S) -0.0139
(0.0181) (0.0152)

New York (N) -0.0255 Louisiana (S) -0.0162
(0.0313) (0.0158)

Virginia (S) -0.0255 Ohio (N) -0.0257
(0.0172) (0.0166)

New Jersey (N) -0.0389 North Carolina (S) -0.0262
(0.0457) (0.0160)

Illinois (N) -0.0469 New Jersey (N) -0.0332
(0.0440) (0.0128)

Alabama (S) -0.0476 Pennsylvania (N) -0.0412
(0.0205) (0.0084)

Indiana (N) -0.0492 Indiana (N) -0.0448
(0.0500) (0.0114)

Note: Authors’ calculations, U.S. Census data from 1980 and 1990, and Vital Statistics from
1980–1990. Mortality in each cohort is first calculated using GMM (as described in the text). Log
of mortality is the dependent variable in a regression that includes cohort indicator variables, and
State indicator variables. State effects, normed to average 0, and are reported here. Standard
errors are in parentheses. n = 150 in each regression.
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Table 4: Household Characteristics in 1940 for Children Born 1930–1939

A. Blacks

(1) Household (2) Household Income (3) Years of Schooling
State Income per Capita of Household Head

Alabama (S) 299 72.9 3.88
Arkansas (S) 216 74.9 4.84
Georgia (S) 316 65.8 3.59
Illinois (N) 771 181.3 7.21
Indiana (N) 752 136.3 7.13
Louisiana (S) 282 74.6 3.34
Mississippi (S) 163 59.1 4.41
New Jersey (N) 912 151.0 6.44
New York (N) 914 191.3 7.54
North Carolina (S) 365 84.0 4.32
Ohio (N) 773 154.1 7.22
Pennsylvania (N) 764 162.0 6.68
South Carolina (S) 257 61.3 3.82
Tennessee (S) 379 99.7 5.20
Virginia (S) 501 103.0 4.35

B. Whites

(1) Household (2) Household Income (3) Years of Schooling
State Income per Capita of Household Head

Alabama (S) 574 164.2 6.98
Arkansas (S) 404 126.7 7.19
Georgia (S) 678 188.6 7.06
Illinois (N) 1293 326.3 8.82
Indiana (N) 1052 272.3 8.99
Louisiana (S) 804 232.3 6.74
Mississippi (S) 503 150.8 8.09
New Jersey (N) 1652 371.5 8.46
New York (N) 1455 364.5 8.62
North Carolina (S) 735 185.1 6.91
Ohio (N) 1220 298.5 9.07
Pennsylvania (N) 1179 273.3 8.19
South Carolina (S) 772 204.6 7.30
Tennessee (S) 624 168.0 6.80
Virginia (S) 940 231.1 6.80

Note: Authors’ calculations. Data from public use files of the 1940 U.S. Census.
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Table 5: Relationship Between Mid-Life Mortality and 1940 Household Characteristics, Co-
horts Born 1930–1939

A. Women
Variable All Blacks Whites
Log(HH Inc.) -0.019 -0.025 -0.017

(0.0199) (0.0186) (0.0273)
Log(HHI/Person) -0.016 -0.047 -0.006

(0.0268) (0.0308) (0.0333)
Education -0.011 -0.015 -0.009

(0.0078) (0.0102) (0.0094)

N 300 300 300 150 150 150 150 150 150

B. Men
Variable All Blacks Whites
Log(HH Inc.) -0.171*** -0.083** -0.201***

(0.0286) (0.0338) (0.0337)
Log(HHI/Person) -0.212*** -0.138*** -0.231***

(0.0317) (0.0403) (0.0368)
Education -0.076*** -0.043** -0.088***

(0.0088) (0.0149) (0.0084)

N 300 300 300 150 150 150 150 150 150
Note: Author’s calculations. The dependent variable is the log of GMM mortality estimates, as described in the text.
Explanatory variables are calculated using 1940 Census data for households with children born 1930–1939. Log(HH Inc.)
is the natural logarithm of household income, Log(HHI/Person) is the log of household income per household member, and
Education is years of schooling of household head. Each coefficient reflects a separate regression with indicator variables for
year of birth included as covariates. Standard errors, given in parentheses, are clustered at the State of birth. *** p < 0.01,
** p < 0.05, * p < 0.1.
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