
 

 

 

 

 

 

 

 

 

On the Relationships between Period and Cohort Fertility 

 

Lu Lei * 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22 April 2012 

 

 
* The author is from China and was a former research fellow at the Institute of Population Research, Renmin University 

of China, Beijing, China. The author has a B.Sc. degree in computer science and applied mathematics, and an M.A. 

degree and a Ph.D. degree in demography. 

 
 
E-mail: lulei321@gmail.com 



 

 

 

 

 

 

Contents 

 

 

 1. Introduction ............................................................................................................  1 

 2. A general relationship between period and cohort fertility ....................................  1 

 3. Some specific expressions of nQ  ..........................................................................  9 

 4. Specific expressions of tG  - Assumption I ........................................................  13 

 5. A specific expression of tG  - Assumption II .....................................................  21 

 6. Relationship between the two period curves )(af p

t  and )(ah p

t  .......................  27 

 7. A closer examination of the Ryder’s basic translation equation ..........................  30 

 8. Effect of change in the cohort standard deviation on tG  ....................................  33 

 9. Suggestion for further study ................................................................................... 35 

 

 Annex A. Some properties of the (statistical) moments ...........................................  36 

 Annex B. Some properties of the Gamma function ..................................................  39 

 

 References .................................................................................................................  45 

 

 

 



On the Relationships between Period and Cohort Fertility – by Lu Lei (China) 

Page 1 

 

1. Introduction 

 

The relationships between period and cohort fertility measures have been one of the central issues in 

demography. In this regard, Ryder (1960, 1964) was one the first pioneers in trying to establish the 

relationships mathematically, who also coined the term “demographic translation” for the process. 

Since then, many researchers have made contributions in terms of improving and extending the 

original translation equations developed by Ryder (e.g. Foster, 1990; Ní Bhrolcháin, 1992; Bongaarts 

and Feeney, 1998; Keilman, 2000; Kohler and Philipov, 2001; Zeng and Land, 2002; Rodríguez, 

2006), and a number of important results have been achieved. 

 

However, there has been, to some extent, a lack of a unified analytical framework, which connects 

the dots in a more systematic way. This paper attempts to further examine the quantitative 

relationships between period and cohort fertility based on a unified analytical framework. 

 

2. A general relationship between period and cohort fertility 

 

In demography, age, period and cohort are three key dimensions and the Lexis diagram is a powerful 

tool to facilitate age-period-cohort (A-P-C) analysis. The Lexis diagram provides a graphical 

representation of the relationships among age, period and cohort. Figure 1 shows a portion of the 

Lexis diagram, in which we have the following correspondences: 

 

� Cohort-age analysis (i.e. cohort y and age a) corresponds to parallelogram DGHE, which 

crosscuts two years (i.e. t-1 and t) and is called the cohort-age parallelogram. 

� Period-cohort analysis (i.e. year t and cohort y) corresponds to parallelogram DHEA, which 

crosscuts two ages (i.e. a and a+1) and is called the period-cohort parallelogram. 

� Period-age analysis (i.e. year t and age a) corresponds to square DHIE, which crosscuts two 

cohorts (i.e. cohort y and cohort y+1) and is called the period-age square. 

� Age-period-cohort analysis (i.e. age a, year t, and cohort y) corresponds to triangle DHE, 

which is called the age-period-cohort triangle. 

 

When discussing measures of demographic events (e.g. fertility), it is very important to be clear about 

which geometric shape is addressed. For example, the conventional (period) total fertility rate (TFR) 
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is defined as the sum (total) of the age-specific fertility rates based on the squares (i.e. the period-age 

squares) of the corresponding year. 

 

Figure 1. Lexis diagram for age-period-cohort analysis 
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Since the focus of this paper is on the relationships between period and cohort fertility, the geometric 

shape to be used is the period-cohort parallelogram (i.e. DHEA in Figure 1). Therefore, for the 

purpose of this paper, the Lexis diagram in Figure 2 is used as a unified analytical framework for 

examining the quantitative relationships between period and cohort fertility. When Figure 2 is read 

horizontally, it relates to age analysis (i.e. age-period, or age-cohort); when Figure 2 is read 

vertically, it relates to period analysis (i.e. period-age, or period-cohort); when Figure 2 is read 

diagonally, it relates to cohort analysis (i.e. cohort-age, or cohort-period). 

 

Suppose that year t is the period under study. From Figure 2, it is obvious that women who are aged a 

at the beginning of year t must be born in year 1−− at .1 Now we define a few variables as follows. 

Let c

yW  represent the number of women who were born in year y (y = t-50, t-49, …, t-16), where the 

superscript c stands for cohort. Obviously, c

yW  constitute a birth cohort. For women of birth cohort 

y (i.e. diagonal in Figure 2), let )(aW c

y  represent the number of women who are aged a (a = 15, 

16, …, 49) at the beginning of the corresponding year. We assume that there is no mortality before 

the end of women’s reproductive lifespan, then we have c

y

c

y

c

y

c

y WWWW ==== )49()16()15( L . 

                                                           
1 Please note that in this paper, age a always refers to the age of women at the beginning of a corresponding year. 
 

Age 

a 

a+1 
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Figure 2. Lexis diagram – A unified analytical framework 
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Let c

yB  denote the total number of live births that c

yW  delivered during their entire reproductive 

lifespan and )(aBc

y  denote the number of live births that c

yW  delivered during the year at the 

beginning of which the women were aged a. Here, )(aBc

y  corresponds to the parallelogram 

concerned. It is obvious that ∑
=

=
49

15

)(
a

c

y

c

y aBB . 

 

For birth cohort y, we define its (cohort) age-specific fertility rates as follows: 

 )()()( aWaBaf c

y

c

y

c

y = , 49,,16,15 K=a  (2.1) 

Please note that the )(af c

y  defined above are actually cohort-period measures, i.e. they are based on 

the cohort-period parallelogram (i.e. DHEA in Figure 1), not the cohort-age parallelogram (i.e. 

DGHE in Figure 1). 

 

For birth cohort y, we define its (cohort) lifetime fertility rate (LFR) as the average number of live 

births that c

yW  delivered during their entire reproductive lifespan, i.e. c

y

c

yy WBLFR = . Then, we 

have 

 ∑∑∑
∑

===

= ====
49

15

49

15

49

15

49

15 )(
)(
)()(

)(

a

c

y

a

c

y

c

y

a

c

y

c

y

c

y

a

c

y

y af
aW

aB

W

aB

W

aB

LFR  (2.2) 

Equation (2.2) indicates that, for each birth cohort (y), its lifetime fertility rate equals the sum of the 

cohort age-specific fertility rates.2 

 

For birth cohort y, the sequence { }49,,16,15)( K=aaf c

y  constitutes an age distribution of the 

lifetime fertility rate of the cohort (i.e. yLFR ). For the sequence { }49,,16,15)( K=aaf c

y , we 

define its standardized age pattern (schedule) of fertility as { }49,,16,15)( K=aahc

y , where 

y

c

y

c

y LFRafah )()( = , 49,,16,15 K=a . It is obvious that 0)( ≥ahc

y  )49,,16,15( K=a  and 

1)(
49

15

=∑
=a

c

y ah . From the definition above, we see that for birth cohort y, )%(ahc

y  of the yLFR  was 

born in year 1++ ay , at the beginning of which, the women were aged a. From the above 

definitions, we obtain c

y

c

y

c

y BaBah )()( = , 49,,16,15 K=a . Furthermore, we have 
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 y

c

y

c

y LFRahaf ⋅= )()( , 49,,16,15 K=a  (2.3) 

Equation (2.3) indicates that )(af c

y  can be expressed as the product of two cohort factors, one is a 

cohort fertility level factor (i.e. yLFR ), the other is a cohort fertility timing factor (i.e. )(ahc

y ).3 

Therefore, any cohort or period fertility measures based on )(af c

y  will have a level component and 

a timing component. 

 

Now let’s look at the Lexis diagram in Figure 2 from a period perspective. It is obvious that, for year 

t, we have two period curves of age-specific fertility rates, i.e. { }49,,16,15)()1( K=+− aaf c

at  and 

{ }49,,16,15)()1( K=+− aahc

at . For convenience hereafter, we denote )()( )1( afaf c

at

p

t +−=  and 

)()( )1( ahah c

at

p

t +−= , 49,,16,15 K=a , where the superscript p stands for period. Then we have 

 )1()()( +−⋅= at

p

t

p

t LFRahaf , 49,,16,15 K=a  (2.4) 

Now, we define the (period) total fertility rate (TFR) for year t as follows: 

 ∑∑
==

+−−−− ==+++=
49

15

49

15
)1(501716 )()()49()16()15(

a

p

t

a

c

at

c

t

c

t

c

tt afaffffTFR L  (2.5) 

Please note that the definition of the total fertility rate of year t (i.e. tTFR ) above is based on the age-

specific fertility rates that correspond to the concerned cohort-period parallelograms, while the 

conventional TFR is based on the age-specific fertility rates that correspond to the concerned period-

age squares. 

 

From equations (2.4) and (2.5), we have  

 ∑∑
=

+−

=

⋅==
49

15
)1(

49

15

])([)(
a

at

p

t

a

p

tt LFRahafTFR  (2.6) 

Define ∑
=

=
49

15

)(
a

p

tt ahG , then equation (2.6) can be rewritten as 

 tt

a

at

t

p

t
tt LFRGLFR

G

ah
GTFR ⋅=








⋅







⋅= ∑

=

+−

49

15
)1(

)(
 (2.7) 

where tG  is a period (year t) adjustment factor, while ∑
=

+− 







⋅







=

49

15
)1(

)(

a

at

t

p

t
t LFR

G

ah
LFR  is a 

                                                                                                                                                                                                   
2 This is probably the origin of the term – total fertility rate. 
3 Many researchers call the fertility level factor the quantum component and the fertility timing factor the tempo component. 



On the Relationships between Period and Cohort Fertility – by Lu Lei (China) 

Page 6 

weighted average of the concerned (cohort) lifetime fertility rates. Equation (2.7) shows that, under 

the assumption of no mortality before the end of the reproductive lifespan, the (period) TFR  in year 

t (as defined in equation (2.5)) can be decomposed into two components, i.e. a level (quantum) factor 

(i.e. tLFR ) and a timing (tempo) factor (i.e. tG ). 

 

Mathematically, equation (2.7) provides a general expression for the quantitative relationship 

between the (period) total fertility rate and the corresponding (cohort) lifetime fertility rates. Butz and 

Ward (1979) noticed the relationship expressed in equation (2.7) and called the quantity tG  the 

timing index (TI), and the quantity tLFR  the average completed fertility (AC). 

 

Equation (2.7) also provides a way for decomposing the change in the (period) total fertility rate into 

different factors as follows: 

 IEELFRGLFRGTFRTFR tttttt ++=⋅−⋅=− +++ timinglevel111  (2.8) 

where )( 1level ttt LFRLFRGE −⋅= +  is the net effect of the change in the fertility quantum component 

(i.e. assuming that the fertility tempo component remains unchanged from year t to year t+1); 

ttt LFRGGE ⋅−= + )( 1timing  is the net effect of the change in the fertility tempo component (i.e. 

assuming that the fertility quantum component remains unchanged from year t to year t+1); and 

)()( 11 tttt LFRLFRGGI −⋅−= ++  is an interaction term, which reflects the joint effect of the 

simultaneous changes in both the fertility tempo and the fertility quantum components. 

 

By its definition, the period quantity tG  is affected by the childbearing behaviors of the concerned 

birth cohorts (i.e. t-50, t-49, …, t-16) in year t. Theoretically, tG  can take numerical values between 

0 and 35. If all women of all the birth cohorts (i.e. t-50, t-49, …, t-16) do not give any births in year t, 

then 0=tG  (because in this case, we have 0)49()16()15( 501716 ==== −−−
c

t

c

t

c

t hhh L ). If all women of 

all the birth cohorts (i.e. t-50, t-49, …, t-16) deliver all their (lifetime) births in year t, then 35=tG  

(because in this case, we have 1)49()16()15( 501716 ==== −−−
c

t

c

t

c

t hhh L ). Obviously, the above 

situations are two extremes. In reality, the numerical values of tG  usually fall between 0.5 and 1.5. 

It is also obvious that if all the birth cohorts of women (i.e. t-50, t-49, …, t-16) follow the same 

standardized cohort age pattern of fertility, then 1=tG . 
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Let t

p

t

p

t GahaH )()( = , 49,,16,15 K=a , then it is obvious that 0)( ≥aH p

t  and 1)(
49

15

=∑
=a

p

t aH . 

Therefore, { }49,,16,15)( K=aaH p

t  constitutes a standardized period (year t) age pattern 

(schedule). Thus, equation (2.7) can be rewritten as 

 ∑
=

+−⋅⋅=
49

15
)1( ])([

a

at

p

ttt LFRaHGTFR  (2.9) 

 

Suppose that yLFR  can be expressed by the following nth-degree polynomial of y: 

 ∑
=

⋅=⋅++⋅+⋅+=
n

i

i

i

n

ny yyyyLFR
0

2
210 )(λλλλλ L  (2.10) 

where n is a non-negative integer and iλ , ni ,,2,1,0 K= , are the polynomial coefficients. Let 

1−= tT , then from equations (2.9) and (2.10), we have 

 ∑ ∑∑ ∑
= == =









⋅−⋅⋅=








−⋅⋅⋅=

n

i a

p

t

i

it

a

n

i

i

i

p

ttt aHaTGaTaHGTFR
0

49

15

49

15 0

)]()[(])([)( λλ  (2.11) 

Let ∑ ∑
= =









⋅−⋅=

n

i a

p

t

i

in aHaTQ
0

49

15

)]()[(λ , then equation (2.11) becomes 

 ntt QGTFR ⋅=  (2.12) 

In other words, under the polynomial assumption about yLFR , we have nt QLFR = . 

 

By the binomial theorem, we have 

 ∑∑
=

−

=

−








⋅⋅









−⋅
⋅−=





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
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
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

−
=−

i

j

jjij
i

j

jjii aT
jij

i
aT

jij

i
aT

00 )!(!
!

)1()(
)!(!

!
)(  (2.13) 

Therefore, we obtain 

 ∑ ∑
= = 








⋅−⋅=
n

i a

p

t

i

in aHaTQ
0

49

15

)]()[(λ  

 ∑ ∑ ∑
= = =

−
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

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


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

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
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
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







−⋅
⋅−⋅=

n

i a

i

j

p

t

jjij

i aHaT
jij

i

0

49

15 0

)(
)!(!

!
)1(λ  

 ∑ ∑ ∑
= = =

−





















⋅⋅⋅




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


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i
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0 0
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To further explore the period quantity nQ , we need to examine the period curve )(aH p

t . In this 

connection, the (statistical) moments are important measures for describing )(aH p

t . There are two 

types of moments for describing a probability distribution, i.e. the absolute moments (about zero or 

origin) and the central moments (about the mean). Suppose that function )(xp  represents a 

probability distribution (i.e. )(xp  satisfies 0)( ≥xp  and 1)( =∑
xall

xp ), then its moments are 

defined as follows: 

 

The rth absolute moment (about zero or origin) of )(xp  is defined as 

 ∑ ⋅=
xall

r

r xpxpM )]([ˆ  (2.15) 

where r is a non-negative integer. It is obvious that 1ˆ
0 =pM  and ppM µ=1

ˆ , where 

∑ ⋅=
xall

xpxp )]([µ  is the mean of )(xp . 

 

The rth central moment (about the mean) of )(xp  is defined as 

 ∑ ⋅−=
xall

r

r xppxpM )]()[(
~

µ  (2.16) 

where r is a non-negative integer. It is obvious that 1
~

0 =pM , 0
~
1 =pM , and pvpM =2

~
, 

where ∑ ⋅−=
xall

xppxpv )]()[( 2µ  is the variance of )(xp . 

 

Other relevant properties of the moments are given in Annex A. 

 

From equation (2.14), we have 

 ∑ ∑
= =

−





















⋅⋅









−⋅
⋅−⋅=

n

i

i

j

p

tj

jij

in HMT
jij

i
Q

0 0

ˆ
)!(!

!
)1(λ  (2.17) 

It is obvious from equation (2.17) that 

 









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






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







−⋅
⋅−⋅+=

=⋅=

∑
=

−
− ndHMT

jdj

d
QQ

HMQ

d

j

p

tj

jdj

ddd

p

t

,,2,1,ˆ
)!(!

!
)1(

ˆ

0
1

0000

Kλ

λλ

 (2.18) 
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Once the polynomial coefficients iλ , ni ,,2,1,0 K= , are known, equation (2.17) shows that nQ  is 

a linear function of the absolute moments of )(aH p

t , i.e. nQ  can be written in the following form 

 ∑
=

⋅+=
n

i

p

tiin HMQ
1

0 )ˆ~
(λλ  (2.19) 

Equation (2.19) shows that nQ  is determined by the polynomial coefficients and the absolute 

moments of the period curve )(aH p

t . 

 

Based on the general relationship, expressed in equation (2.12), we will explore some specific 

relationships between the (period) total fertility rate and the (cohort) lifetime fertility rates. In this 

regard, we will look at the period level component (i.e. nQ ) and the period timing component (i.e. 

tG ) separately, as the two components may be considered “independent of each other” from a 

mathematical point of view. 

 

3. Some specific expressions of nQ  

 

3.1 The (cohort) lifetime fertility rate remains constant over time (birth cohort) 

Under this assumption, we have 501716 −−− === ttt LFRLFRLFR L , denoted as LFR . This is 

equivalent to taking 0=n  in equation (2.10). Therefore, 0λ== LFRLFRy . Then from equation 

(2.18), we have LFRQ == 00 λ . In this case, we have 

 LFRGQGTFR ttt ⋅=⋅= 0  (3.1) 

Equation (3.1) shows that even if the level of cohort fertility (i.e. lifetime fertility rate) is invariant 

over time (cohort), the (period) total fertility rate may be greater than, equal to, or smaller than the 

(cohort) lifetime fertility rate depending on the period adjustment factor for year t (i.e. tG ). If 1=tG  

(women procreate in year t “normally”), then we have LFRTFRt = . If 1>tG  (women “favor” year 

t in terms of childbearing), then we have LFRTFRt > . If 1<tG  (women “avoid” year t in terms of 

childbearing), then we have LFRTFRt < . 

 

3.2 The (cohort) lifetime fertility rate changes linearly with time (birth cohort) 

This is equivalent to taking 1=n  in equation (2.10), i.e. yλλLFRy ⋅+= 10 . Then from equation 

(2.18), we have 
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)1(ˆ1101101

1
)ˆ()ˆ(

+−−
==−⋅+=−⋅+= p

t
p

t HtHMT

p

t

p

t LFRLFRHMTHMTQQ
µ

λλλ  (3.2) 

In equation (3.2), 
)1( +− p

tHt
LFR

µ
 is the lifetime fertility rate of birth cohort )1( +− p

tHt µ , which 

is aged p

tHµ  at the beginning of year t. Figure 3 shows the relationship between 1Q  and 

p

tHµ . 

Figure 3. Relationship between 1Q  and p

tHµ . 

0.00 15 20 25 30 35 40 45 50
 

 

Equation (3.2) shows that under the linear assumption, 1Q  is affected by the mean of the period 

curve )(aH p

t , but not affected by its shape (e.g. variance, skewness, kurtosis). 

 

In this case, we have 

 
)1(1 +−

⋅=⋅= p
tHtttt LFRGQGTFR

µ
 (3.3) 

Equation (3.3) indicates that, under the assumption stated above, the mean age of the standardized 

period fertility curve )(aH p

t  (i.e. p

tHµ ) plays a key role in determining the total fertility rate for 

year t (i.e. tTFR ). 

 

Based on the data from China’s 2‰ fertility survey conducted in 1988, we produced Figure 4, which 

shows that the (cohort) lifetime fertility rates ( yLFR ) of Chinese women born during 1931-1950 

declined almost linearly with time (cohort), with the coefficient of determination being 99.02 =R . 

p

tHµ  

)0( 1 >λyLFR  
)0( 1 <λyLFR  

Age 

)(aH p

t  

1Q  
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In producing Figure 4, p

tHµ  was set at a constant of 29 years of age. 

 

Figure 4. The values of yLFR , tTFR  and tG  - China 
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3.3 The (cohort) lifetime fertility rate changes quadratically with time (birth cohort) 

This is equivalent to taking 2=n  in equation (2.10), i.e. 2
210 yyλλLFRy ⋅+⋅+= λ . Therefore 

from equation (2.18), we have 

 ]ˆˆ2[ 21
2

212
p

t

p

t HMHMTTQQ +⋅⋅−⋅+= λ  

 ])ˆ(ˆ)ˆ[( 2
12

2
121

p

t

p

t

p

t HMHMHMTQ −+−⋅+= λ  

 2
12110 )ˆ()ˆ( p

t

p

t HMTHMT −⋅+−⋅+= λλλ  

 ])ˆ(ˆ[ 2
122

p

t

p

t HMHM −⋅+ λ  

 p

tHMT
HDLFR p

t
22ˆ
ˆ

1
⋅+=

−
λ  

 2
2)1(

)( p

tHt
HLFR p

t

σλ
µ

⋅+=
+−

 (3.4) 

In equation (3.4), 
)1( +− p

tHt
LFR

µ
 is the lifetime fertility rate of birth cohort )1( +− p

tHt µ  (which 

Year 
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is aged p

tHµ  at the beginning of year t), and 2
2 )( p

tHσλ ⋅  is a modification term. It is obvious 

that (i) when 02 >λ  (i.e. the parabola opens upwards), the modification term is positive, and (ii) 

when 02 <λ  (i.e. the parabola opens downwards), the modification term is negative. Equation (3.4) 

also shows that under the quadratic assumption, 2Q  is not only affected by the mean of the period 

curve )(aH p

t , but also affected by its standard deviation. In this case, we have 

 




 ⋅+⋅=⋅=

+−

2
2)1(2 )( p

tHtttt HLFRGQGTFR p
t

σλ
µ

 (3.5) 

 

3.4 The (cohort) lifetime fertility rate changes cubically with time (birth cohort) 

This is equivalent to taking 3=n  in equation (2.10), i.e. 3
3

2
210 yyyλλLFRy ⋅+⋅+⋅+= λλ . 

Therefore from equation (2.18), we have 

 ]ˆˆ3ˆ3[ 321
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323
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 3
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2
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t

p

t

p

t HMTHMTHMT −⋅+−⋅+−⋅+= λλλλ  

 p

tHD22
ˆ⋅+ λ  
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 )ˆˆ3(ˆ
32322)1(
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λλ
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 (3.6) 

Since 

 3
2

32 )(ˆˆ3 ωσ ⋅=−⋅⋅ p

t

p

t

p

t HHDHDT  

where p

t

p

t

p

t HsHHT ⋅−⋅−⋅= σµω 333 , equation (3.6) can be rewritten as 

 3
2

3
2

2)1(3 )()( ωσλσλ
µ

⋅⋅+⋅+=
+−

p

t

p

tHt
HHLFRQ p

t

 

 2
332)1(

)()( p

tHt
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t

σωλλ
µ

⋅⋅++=
+−

 (3.7) 

In this case, we have 

 



 ⋅⋅++⋅=⋅=

+−

2
332)1(3 )()( p

tHtttt HLFRGQGTFR p
t

σωλλ
µ

 (3.8) 

 

3.5 The (cohort) lifetime fertility rate changes quartically with time (birth cohort) 

This is equivalent to taking 4=n  in equation (2.10), i.e. 
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4
4

3
3

2
210 yyyyλλLFRy ⋅+⋅+⋅+⋅+= λλλ . Therefore from equation (2.18), we have 
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 ]ˆˆ4ˆ6[ 432
2

4
p

t

p

t

p

t HDHDTHDT +⋅⋅−⋅⋅⋅+ λ  (3.9) 

Since 

 4
2

432
2 )(ˆˆ4ˆ6 ωσ ⋅=+⋅⋅−⋅⋅ p

t

p

t

p

t

p

t HHDHDTHDT  (3.10) 

where p

t

p

t

p

t

p

t

p

t

p

t HkHHTHsHTHT ⋅+−⋅⋅⋅−−⋅⋅⋅−⋅= 22
4 )()(4)12(66 σµσµω , 

equation (3.9) can be rewritten as 
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2
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2
2)1(4 )()()( p

t

p
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p
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t
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t
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 (3.11) 

In this case, we have 

 




 ⋅⋅+⋅++⋅=⋅=

+−

2
44332)1(4 )()( p

tHtttt HLFRGQGTFR p
t
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 (3.12) 

 

4. Specific expressions of tG  - Assumption I 

From the discussions above, we have noticed that the period quantity ∑
=

=
49

15

)(
a

p

tt ahG  (for year t) is a 

very important factor in terms of linking the (period) total fertility rate to the corresponding (cohort) 

lifetime fertility rates. 

 

Following a similar approach of Ryder (1964), we assume that for each age a, the time sequence 

{ }16,,49,50)( −−−= tttyahc

y K  can be represented by the following mth-degree polynomial of y: 
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 ∑
=

⋅=⋅++⋅+⋅+=
m

i

i

i

m

m

c

y yayayayaaah
0

2
210 ])([)()()()()( βββββ L  (4.1) 

where m is a positive integer and )(aiβ , mi ,,2,1,0 K= , are the polynomial coefficients. Since for 

each birth cohort y, we have 1)(
49

15

=∑
=a

c

y ah , it follows that 

 1)(])([
0

49

15

49

15 0
∑ ∑∑∑

= == =
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
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⋅



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i
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a

i

a

m
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i yaya ββ  (4.2) 

Let ∑
=

=
49

15

)(
a

ii aβπ , then we have 

 1)(
0

2
210 =⋅=⋅++⋅+⋅+ ∑

=

m

i

i

i

m

m yyyy πππππ L  (4.3) 

We define an mth-degree polynomial of y as follows: 1)()(
0

−⋅=∑
=

m

i

i

im yyq π , where 0≠mπ , then it 

is obvious that the polynomial )(yqm  has 35 real (integer) roots, i.e. y = t-50, t-49, …, t-16. It can be 

proved that when 35<m , there must be 10 =π  and 0=iπ  ( mi ,,2,1 K= ). (Proof by 

contradiction: If 0≠mπ , then according to the fundamental theorem of algebra, the polynomial 

)(yqm  has at most m real roots, which contradicts the fact that the polynomial )(yqm  has 35 real 

roots). Therefore, we have 0=mπ . Following the same logic, we have 01 =−mπ , …, 01 =π . 

Hence, from equation (A.3), we have 10 =π . 

 

From the definition of tG  and letting 1−= tT , we have 
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Then by applying the binomial theorem to equation (4.4), we have 
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Equation (4.5) provides a general expression for tG , under assumption expressed in equation (4.1). 
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For each birth cohort y, we denote the mean age of the standardized cohort fertility schedule )(ahc

y  

as c

yhµ , 16,,49,50 −−−= ttty K , then we have 

 ∑ ∑∑ ∑∑
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Equation (4.6) shows that under the assumption stated in equation (4.1), c

yhµ  is also a polynomial 

of degree m. 

 

For each birth cohort y, we denote the variance of the cohort fertility curve )(ahc

y  as c

yhv , then we 

have ∑
=

⋅−=
49

15

2 )]()[(
a

c

y

c

y

c

y ahhahv µ , y = t-50, t-49, …, t-16, and 
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 (4.7) 

Equation (4.7) shows that under the assumption stated in equation (4.1), c

yhv  is a polynomial of 

degree m⋅2 . 

 

Now, let’s consider two specific cases. 

 

4.1 For each age a )49,,16,15( K=a , the time sequence { }16,,49,50)( −−−= tttyahc

y K  can 

be represented by a linear function of y 

 

This is equivalent to taking 1=m  in equation (4.1), i.e. yaaahc

y ⋅+= )()()( 10 ββ , where )(0 aβ  is 

the intercept and )(1 aβ  is the slope of the straight line. Then, from the discussion above, we know 

that 1)(
49

15
00 ==∑

=a

aβπ  and 0)(
49

15
11 ==∑

=a

aβπ . Therefore, from equation (4.5), we have 
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In the mean time, from equation (4.6), we have 
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 yaaaah
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49
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0 )]([)]([ ββµ  (4.9) 

Equation (4.9) shows that under the assumption stated, the mean age of the standardized cohort 

fertility schedule )(ahc

y , 16,,49,50 −−−= ttty K , is also a linear function of the birth cohort (y), 

with the intercept being ∑
=

⋅
49

15
0 )]([

a

aa β  and the slope ∑
=

⋅
49

15
1 )]([

a

aa β . From equation (4.9), we also 

have )(
34
1

)]([ 5016

49

15
1

c

t

c

t

a

hhaa −−

=

−⋅=⋅∑ µµβ . 

 

Let ∑
=

⋅=
49

15
1 )]([

a

aa βϕ , then equation (4.8) becomes ϕ−=1tG , where ϕ  is the slope of c

yhµ . In 

other words, under the assumption stated, tG  is equal to one minus the slope (rate of change) of the 

mean age of the cohort fertility curve )(ahc

y , y = t-50, t-49, …, t-16. 

 

Taking the first derivative with respect to y on both sides of equation (4.9), we obtain 

 ϕβµ =⋅=′ ∑
=

49

15
1 )]([][

a

y

c

y aah  (4.10) 

Therefore, tG  can also be written as y

c

yt hG ][1 ′−= µ . 

 

Under different assumptions, Ryder (1964) obtained a similar result by using the moment approach. 

It is obvious from equation (4.10) that (i) if the mean ages of the standardized cohort fertility curves 

)(ahc

y  increase from cohort to cohort (i.e. women postpone childbearing), then 0][ >′
y

c

yhµ  and 

therefore 1<tG ; and (ii) if the mean ages of the standardized cohort fertility curves )(ahc

y  decrease 

from cohort to cohort (i.e. women advance childbearing), then 0][ >′
y

c

yhµ  and therefore 1>tG . 

 

From equation (4.7), we have the variance of the cohort fertility curve )(ahc

y  (y = t-50, t-49, …, t-

16) as follows 
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 (4.11) 

Equation (4.11) shows that under the assumption stated, the variance of the cohort fertility curve 
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)(ahc

y  (y = t-50, t-49, …, t-16) is a quadratic function of the birth cohort (y), with the coefficient of 

the quadratic term (i.e. 2y ) being 
249

15
1 )]([ 




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


⋅− ∑

=a

aa β  (<0). Therefore, c

yhv  (y = t-50, t-49, …, t-

16) is a parabola, which opens downwards. 
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Substituting equation (4.8) into equation (4.12), we have 

 

∑
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µ  (4.13) 

 

Next, we will conduct a numerical simulation so that we can have a concrete understanding of the 

theoretical relationships discussed above. For this purpose, we will use the following Gamma 

function for the simulation. 

 




<

≥⋅−⋅
=

−⋅−

0

0
)(

0

,0

,)(
)(

0

aawhen

aawheneaaK
ag

aaBA

 (4.14) 

The properties of the above-defined Gamma function are discussed in detail in Annex B. 

 

Suppose that (i) the standardized cohort fertility schedule { }49,,16,15)(50 K=− aahc

t (i.e. the oldest 

birth cohort) follows a Gamma function with a mean of 28 and a standard deviation of 5, and (ii) the 

standardized cohort fertility schedule { }49,,16,15)(16 K=− aahc

t  (i.e. the youngest birth cohort) 

follows a Gamma function with a mean of 32 and a standard deviation of 5. All the standardized 

cohort fertility schedules between the oldest and the youngest birth cohorts are then generated by 

linear interpolation age by age between the oldest and the youngest birth cohorts, i.e. for each age a 

(a = 15, 16, …, 49), the )(ahc

y  is calculated as follows: 
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 )]50()[()()( 50 −−∆+= − tyaahah c

t

c

y , 17,,48,49 −−−= ttty K  (4.15) 

where 34/)]()([)( 5016 ahaha c

t

c

t −− −=∆ . It can be easily proved that )(ahc

y  generated as per equation 

(4.13) satisfies 0)( ≥ahc

y  and ∑
=

=
49

15

1)(
a

c

y ah . 

 

Figure 5. Intercept by age (i.e. )(0 aβ ) 
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Figure 6. Slope by age (i.e. )(1 aβ ) 
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Figure 7. Mean ( c

yhµ ) and variance ( c

yhv ) of )(ahc

y  

22.0
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t-50 t-16

Birth cohort (y )

 
 

4.2 For each age a )49,,16,15( K=a , the time sequence { }16,,49,50)( −−−= tttyahc

y K  can 

be represented by a quadratic function of y 

 

This is equivalent to taking 2=m  in equation (4.1), i.e. 2
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Then, from the discussion above, we know that 1)(
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aβπ . Therefore, from equation (4.5), we have 
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In this case, the mean age of the standardized cohort fertility curve )(ahc

y  is 
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Equation (4.17) shows that under the assumption stated, the mean age of the cohort fertility curve 

)(ahc

y  is also a quadratic function of the birth cohort (y). The variance of )(ahc

y  is 
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Equation (4.18) shows that under the assumption stated, the variance of the cohort fertility curve 

)(ahc

y  is a quartic function of the birth cohort (y). From equation (4.16), we obtain 
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Taking the second derivative with respect to y on both sides of equations (4.17) and (4.19), we have 
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Incorporating equations (4.20) and (4.21) into equation (4.14), we get 
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From equation (4.17), we have 
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where 1−= tT . Subtracting equation (4.23) from equation (4.24), we obtain 
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Therefore, we have 
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Finally, equation (4.22) becomes 
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where c

t

c

t hh 5016 −− − µµ  can be regarded as the amount of “shift” between the two standardized 

cohort fertility schedules )(16 ahc

t −  and )(50 ahc

t − . 

 

5. A specific expression of tG  - Assumption II 

 

We assume that, for each birth cohort y (y = t-50, t-49, …, t-16), its standardized fertility schedule 

)(ahc

y  is a continuous function of age a. Therefore, we have 0)( ≥ahc

y  and 1)(
50

15

=∫ daahc

y . In 

addition, we designate the birth cohort t-50 (i.e. the birth cohort that reached the oldest childbearing 

age at the beginning of year t) as the benchmark cohort. For )(ahc

y , we symbolize its mean, variance, 

skewness and kurtosis as follows: 
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where c

y

c

y hvh =σ  represents the standard deviation of )(ahc

y . 
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Now, we assume that each cohort curve )(ahc

y , y = t-49, t-48, …, t-16, shifts along the age-axis by a 

constant amount δ  (with no change in the shape of the curve, see Figure 8) relative to the curve of 

the preceeding birth cohort (i.e. y-1), i.e. )()( 1 δ−= − ahah c

y

c

y , y = t-49, t-48, …, t-16. Hence, we have 

))49(()( 50)1( δ⋅−−= −+− aahah c

t

c

at . Therefore, from equation (5.1), we have 
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Let δ−= au , then δ+= ua  and duda = . Therefore, from equation (5.5), we obtain 
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Equation (5.6) shows that under the assumption stated, the mean age of )(ahc

y  also shifts towards 

the same direction (when 0>δ , the standardized cohort fertility curves shift towards the right side 

of the age-axis (i.e. higher ages); when 0<δ , the standardized cohort fertility curves shift towards 

the left side of the age-axis (i.e. lower ages)) and by the same amount (i.e. δ ) as compared to 

)(1 ahc

y− . From equation (5.6), we have 

 δµµ ⋅−−+= − )]50([50 tyhh c

t

c

y , 16,,49,50 −−−= ttty K  (5.7) 

Therefore, c

yhµ  is a linear function of y. Taking the first derivative with respect to y on both sides, 

we obtain δµ =′
y

c

yh ][ . 

 

Similarly, it can be proved that c

y

c

y hvhv 1−= , c

y

c

y hshs 1−= , and c

y

c

y hkhk 1−= . 

 

From the discussions above, we have 
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In continuous form, equation (5.8) can be written as 
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50 )49)1(( daahG c

tt δδ  (5.9) 

Let δδ ⋅−⋅+= 49)1( au , then we have )1( δ+= duda , where 1−≠δ . Therefore, equation (5.9) 

becomes 
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Figure 8. Parallel shifting of the standardized cohort fertility curves along the age-axis 
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Equation (5.10) shows that tG  is a decreasing function of δ  (i.e. the larger the δ , the smaller the 

tG ). Equation (5.9) also shows that (i) when all the concerned standardized cohort fertility curves are 

exactly the same (i.e. 0=δ ), we have 1G t = ; (ii) when the concerned standardized cohort fertility 

curves shift to the right (i.e. to higher ages, but with no change in the shape) by the same amount (i.e. 

0>δ ) from one cohort to the next (i.e. women postpone childbearing), we have 1<tG ; (iii). when 

the concerned standardized cohort fertility curves shift to the left (i.e. to lower ages, but with no 

change in the shape) by the same amount (i.e. 0<δ ) from one cohort to the next (i.e. women 

advance childbearing), we have 1>tG . For example, if 0.1=δ , then 0.91=tG ; if 0.1−=δ , then 

1.11=tG . 

 

Equation (5.10) also shows that tG  is a non-linear function of δ  (i.e. a hyperbola with 1−≠δ ). 

But when 10.010.0 ≤≤− δ , tG  is very close to a linear function of δ  (with the coefficient of 

determination 997.02 =R ), i.e. on the interval [-0.10, 0.10], we have δ−≈1tG  (Actually, the 

)(ahc

y  )(ahc

y  )(1 ahc

y−  

)0(<δ  )0(>δ  
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power series expansion can be considered: L−+−+−=
+

4321
1
1

δδδδ
δ

, where 1<δ ). Since 

δµ =′
y

c

yh ][ , we have y

c

yt hG ][1 ′−≈ µ . Here, we notice that tG  is determined by the rate of 

change ( y

c

yh ][ ′µ ) in the mean age of the standardized cohort fertility schedule ( )(ahc

y ) almost in the 

same form, under the two different assumptions (i.e. I and II). 

 

Under a stricter assumption (i.e. constant cohort and period quanta), Zeng and Land (2002) obtained 

a similar result as the one expressed in equation (5.9), who used the symbol cr  in their paper. 

However, our analysis above shows that the assumption of constant cohort and period quanta is not 

necessary for the result to hold. 

 

Now, let’s take a look at the relationship between the mean ages of the standardized period and 

cohort fertility curves. From the discussions above, we have 
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In continuous form, equation (5.11) can be written as 
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Let δδ ⋅−⋅+= 49)1( au , then we have )1()49( δδ +⋅+= ua  and )1( δ+= duda , where 

1−≠δ . Therefore, equation (5.12) can be written as 
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Since )1(1 δ+=tG , equation (5.13) becomes 
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where ∫ −− ⋅=

50

15

5050 )]([ duuhuh c

t

c

tµ  is the mean age of the standardized fertility schedule of the 
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benchmark birth cohort (i.e. birth cohort t-50). Taking the first derivative with respect to δ  on both 

sides of equation (5.14), we obtain 0
)1(

1
)49(][ 250

' >
+

⋅−= −
δ

µµ δ
c

t

p

t hH . Therefore, p

tHµ  is 

an increasing function of δ  (i.e. the larger the δ , the lager the p

tHµ ). 

 

Since δµµ ⋅+= −− 345016
c

t

c

t hh , it follows from equation (5.14) 
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where ∫ −− ⋅=

50

15

1616 )]([ duuhuh c

t

c

tµ  is the mean age of the standardized age-specific fertility curve of 

the birth cohort t-16. 

 

From equations (5.14) and (5.15), it is obvious that (i) if 0=δ , then c

t

p

t hH 50−= µµ , (ii) if 

0>δ , then c

t

p

t

c

t hHh 1650 −− << µµµ , (iii) if 0<δ , then c

t

p

t

c

t hHh 5016 −− << µµµ . For 

example, assume 2850 =−
c

thµ , then δµ ⋅+=− 342816
c

th . Therefore, if 0.1=δ , then 

40.3116 =−
c

thµ  and 29.91=p

tHµ ; if 0.1−=δ , then 60.2416 =−
c

thµ  and 25.67=p

tHµ . 

 

Next, let’s take a look at the relationship between the variances of the standardized period and cohort 

fertility curves. From the discussions above, we have 
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In continuous form, equation (5.16) can be written as 
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Let δδ ⋅−⋅+= 49)1( au , then we have )1()49( δδ +⋅+= ua  and )1( δ+= duda , where 

1−≠δ . Therefore, equation (5.16) can be written as 
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Since )1(1 δ+=tG , equation (5.18) becomes 
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Equivalently, we have )1(50 δσσ += −
c

t

p

t hH , where σ  stands for standard deviation. Equation 

(5.18) shows that p

tHv  is a decreasing function of δ  (i.e. the larger the δ , the smaller the 

p

tHv ). It is obvious that (i) if 0=δ , then c

t

p

t hH 50−= σσ ; (ii) if 0>δ , then 

c

t

p

t hH 50−< σσ ; (iii) if 0<δ , then c

t

p

t hH 50−> σσ . For example, assume 450 =−
c

thδ , then 

if 0.1=δ , then 64.3=p

tHσ ; if 0.1−=δ , then 44.4=p

tHσ . 

 

Similarly, it can be proved that 
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where s and k stand for skewness and kurtosis respectively. 

 

Now, we discuss the relationship between the period and the cohort mean ages. It is obvious that 

birth cohort )1( +−= p

tHty µ  is aged p

tHµ  (when p

tHµ  is an integer) at the beginning of 

year t. From equations (5.7) and (5.14), we have 
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The above discussion indicates that, under the assumption stated, the mean age of the standardized 

period fertility schedule )(aH p

t  is the same as the mean age of the standardized fertility schedule of 

the birth cohort )1( +−= p

tHty µ  that reaches its mean age of fertility right at the beginning of 

year t. 

 

6. Relationship between the two period curves )(af p

t  and )(ah p

t  

 

In the discussions above, there are two important period fertility curves for year t, i.e. )(af p

t  and 

)(ah p

t , whose general relationship is given in equation (2.4). Now, we will look at the relationships 

between the positions and shapes of the two period curves. 
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where 1−= tT . Suppose that yLFR  can be expressed by the following nth-degree polynomial of y: 
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where n is a non-negative integer and iλ , ),,2,1,0( ni K= , are the polynomial coefficients. Then 

equation (6.1) becomes 
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Applying the binomial theorem on iaT )( − , we have 
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Define the rth absolute moment (about zero or origin) of )(aF p

t  and )(aH p

t  as follows: 
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Then, from equation (6.4), we have 
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Equation (6.7) provides a general expression for the relationship between the absolute moments of 

)(aF p

t  and )(aH p

t . 

 

Now, let’s consider one specific case, where yLFR  is a linear function of y. In this case, we have. 

yLFRy ⋅+= 10 λλ . Therefore, equation (6.7) simplifies to 
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Specially, the mean age of )(aF p

t  is as follows: 
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Since yLFRy ⋅+= 10 λλ , we have 11 λ=− −yy LFRLFR  )16,,48,49( −−−= ttty K , and therefore, 

 )]50([150 −−⋅+= − tyLFRLFR ty λ  (6.10) 

 

Based on equation (3.3), equation (6.1) can be rewritten as 
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It is obvious from equation (6.11) that )()( p

t

p

t

p
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p
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From equations (6.10) and (6.12), we obtain 
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From equation (6.13), we obtain 
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that is 
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Therefore, when 01 >λ , we have p

t

p

t HF µµ < , when 01 <λ , we have p

t

p

t HF µµ > . 
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Based on equation (6.10), we can rewrite equation (6.14) as 
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Equation (6.15) also shows that p

t

p

t HF µµ −  is a hyperbolic function of 1λ . Taking the first 

derivative with respect to 1λ  on both sides of equation (6.15), we obtain 
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Therefore, p

t

p

t HF µµ −  is a decreasing function of 1λ . In other words, p

t

p

t HF µµ −  is 

an increasing function of 1λ . Figure 9 graphs the relationship between p

t

p

t HF µµ −  and 1λ  

(assuming 550 =−tLFR , 30=p

tHµ , and 25=p

tHv ). 

 

Figure 9. Relationship between p

t

p

t HF µµ −  and 1λ  
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7. A closer examination of the Ryder’s basic translation equation 

 

In his classic paper on demographic translation, Ryder (1964) developed the following basic 

translation equation between period total fertility rate and cohort total fertility rate: 

 )](1[)],0([),0( '
11 TTTB µβµ −⋅=+  (7.1) 

In normal term, equation (7.1) is equivalent to 

 )](1[ '
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Value of 1λ  

p
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p

t HF µµ −  
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Ryder arrived at the relationship in equation (7.1) based on the assumption that for each age, the time 

series of the age-specific fertility rates may be represented by an nth-degree polynomial with respect 

to T, where T denotes the birth cohort (i.e. year of birth). 

 

Following the approach of Ryder (1964), we assume that for each age a )49,,16,15( K=a , the time 

series { }16,,49,50)( −−−= tttyaf c

y K  can be represented by the following n
th-degree 

polynomial of y: 
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where n is a non-negative integer and )(aiρ , ni ,,2,1,0 K= , are the polynomial coefficients. 

 

Then, from equation (2.2), we obtain the cohort total fertility rate: 
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It is obvious from equation (7.4) that under the assumption expressed in equation (7.3), the cohort 

total fertility rate (i.e. yLFR ) is also an nth-degree polynomial with respect to y. 

 

Similarly, from equation (2.5), we obtain the period total fertility rate: 
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where 1−= tT . Using the binomial theorem, we have 
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It is obvious from equation (7.6) that under the assumption expressed in equation (7.3), the period 

total fertility rate (i.e. tTFR ) is an nth-degree polynomial with respect to t. 

 

Under the assumption expressed in equation (7.3), we have the mean age of childbearing of birth 

cohort y: 
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where y

c

y

c

y LFRafah )()( = . In this case, it is obvious that )(ahc

y  is a ratio of two n
th-degree 

polynomials with respect to y. Therefore, even the first derivative of c

yfµ  is a very complex 

function of y. 

 

Now, we look at a very special situation. Let’s assume that yLFR  is a constant (denoted as LFR ), 

then equation (7.4) becomes 
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Taking the n
th derivative on both sides of equation (7.8), we have ∑
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Equation (7.9) shows that under the assumptions stated, c

yfµ  is an nth-degree polynomial with 

respect to y. It follows that the first derivative of c

yfµ  with respect to y is an (n-1)th polynomial of 

y. Therefore, the first derivative of c

yfµ  is constant if and only if 1=n . 

 

Under the assumptions that (i) for each age a )49,,16,15( K=a , the time series )(af c

y ，y = t-50, 

t-49, …, t-16, can be represented by a linear function of y, and (ii) yLFR  is constant with respect to 

y (denoted as LFR ), we have from equations (7.4) and (7.5) 
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Combining equations (7.10) and (7.11), we obtain 
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From equation (7.9), we have 
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Equation (7.13) shows that, under the assumptions stated above, c

yfµ  is a linear function of y. 

Taking the first derivative with respect to y on both sides of equation (7.13), we get 
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Equation (7.14) shows that, under the assumptions stated above, '][ y

c

yfµ  is constant with respect 

to y and implies that '
49
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. Consequently, equation (7.12) becomes 
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Equation (7.15) shows that, under the assumptions stated above, tTFR  is constant with respect to t. 

 

8. Effect of change in the cohort standard deviation on tG  

 

Mathematically, it is very complex to investigate, in a general way, the effect of change in the cohort 

standard deviation on tG . Therefore, we have to assume that the standardized cohort fertility 

schedule (i.e. )(ahc

y ) follow certain continuous probability distribution. For this purpose, we will use 

the following Gamma function for the simulation. 
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The properties of the above-defined Gamma function are discussed in detail in Annex B. 

 

In order to examine the effect of change (increment/decrement, denoted as gσ∆ ) in the cohort 

standard deviation on tG , we calculated the corresponding values of tG  using the above Gamma 

distribution. In this connection, three scenarios were simulated as follows: 
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 Scenario 1: The mean age of fertility ( gµ ) is held constant at 26 for all birth cohorts and the 

standard deviation of the benchmark cohort (i.e. the start cohort) is set to be 5. 

 Scenario 2:  The mean age of fertility ( gµ ) is held constant at 30 for all birth cohorts and the 

standard deviation of the benchmark cohort (i.e. the start cohort) is set to be 5. 

 Scenario 3:  The mean age of fertility ( gµ ) is held constant at 34 for all birth cohorts and the 

standard deviation of the benchmark cohort (i.e. the start cohort) is set to be 5. 

 

The results of the numerical simulations are shown in Figure 10. From the results of the three 

scenarios, we notice that (i) if the change in the cohort standard deviation is positive, then 1>tG ; 

(ii) the higher the mean age of fertility, the larger the effect of change in the cohort standard deviation 

on tG  is. The numerical simulations also show that when 3426 ≤≤ gµ  and 

10.010.0 ≤∆≤− gσ , we have 03.199.0 << tG . Therefore, based on the numerical simulations, it 

is plausible to conclude that the effect of change in the cohort standard deviation on tG  is basically 

negligible. In terms of the shape of the curves depicted in Figure 10, they are close to parabolas on 

the interval [-0.10, 0.10] of gσ∆ . If the following quadratic function 

2
21 )(1 ggGt σϕσϕ ∆⋅+∆⋅+= , where 1ϕ  and 2ϕ  are coefficients, is used to fit the curves, then 

we have 992.02 >R  (i.e. the coefficient of determination) for all the three scenarios. 

 

Figure 10. Effect of change in the cohort standard deviation on tG  
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Similarly, we simulated the effects of change in the cohort standard deviation on the standard 

deviation of )(aH p

t . Figure 11 shows the results for the three scenarios. It is clear that, when 

3426 ≤≤ gµ  and 10.010.0 ≤∆≤− gσ , the standard deviation of )(aH p

t  is a monotonically 

increasing function of gσ∆  when the cohort mean age of fertility ( gµ ) is held constant. In 

terms of the shape of the curves depicted in Figure 11, they are close to straight lines on the interval 

[-0.10, 0.10] of gσ∆  , with the coefficient of determination 993.02 >R  for all the three 

scenarios. 

 

Figure 11. Effect of change in the cohort standard deviation 

on the standard deviation of )(aH p

t  
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9. Suggestion for further study 

 

In this paper, the relationships between period and cohort fertility are examined in various ways from 

a cohort-to-period perspective. Similarly, the relationships could also be examined from a period-to-

cohort perspective. To gain further insights into the relationships, more numerical simulations and 

empirical analyses could be conducted. 

Change in the cohort standard deviation ( gσ∆ ) 

Standard deviation 

of )(aH p
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Annex A. Some properties of the (statistical) moments 

 

In this annex, we discuss some properties of the (statistical) moments that are relevant to the present 

paper. Suppose that function )(xp  represents a probability distribution (i.e. )(xp  satisfies 

0)( ≥xp  and 1)( =∑
xall

xp ), then its moments are defined as follows: 

 

The rth absolute moment (about zero or origin) of )(xp  is defined as 

 ∑ ⋅=
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where r is a non-negative integer. It is obvious that 1ˆ
0 =pM  and ppM µ=1

ˆ , where 

∑ ⋅=
xall

xpxp )]([µ  is the mean of )(xp . 

 

The rth central moment (about mean) of )(xp  is defined as 
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where r is a non-negative integer. It is obvious that 1
~

0 =pM , 0
~
1 =pM , and pvpM =2

~
, 

where ∑ ⋅−=
xall

xppxpv )]()[( 2µ  is the variance of )(xp . 

 

The absolute and the central moments are important statistical measures for describing the position 

and the shape of a probability distribution. 

 

By the binomial theorem, we have 
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Equation (A.3) gives the general relationship between the central and the absolute moments. 
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Furthermore, the skewness and the kurtosis of )(xp  are defined as: 
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where pvp =σ  is the standard deviation of )(xp . It is obvious that 

psppM ⋅= 3
3 )(

~
σ  (A.6) 

pkppM ⋅= 4
4 )(

~
σ  (A.7) 

 

Based on the above definitions, we have 
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Since 
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 ])ˆ(ˆ[)ˆ(6 2
12

2
1 pMpMpM −⋅⋅+  (A.15) 

we have 

 2
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Annex B. Some properties of the Gamma function 

 

The general formula for the Gamma function is given by 

 




<

≥⋅−⋅
=

−⋅−

0

0
)(

0

,0

,)(
)(

0

aawhen

aawheneaaK
ag

aaBA

 (B.1) 

where (i) 0a  is a constant, representing the start point of the curve, (ii) A ( 0>A ) and B ( 0>B ) are 

constants, which determine the shape of the curve, and (iii) K ( 0>K ) is a coefficient, which ensures 

that 1)(
0

=∫
∞

a

daag , i.e. 1])[(
0

0 )(
0 =⋅−⋅ ∫

∞

−⋅−

a

aaBA daeaaK . Therefore, ∫
∞

−⋅−⋅−=

0

0 ])[(1 )(
0

a

aaBA daeaaK  

once 0a , A and B are known. It is obvious that 0)( ≥ag , ∞<<∞− a . 

 

The following graph shows two concrete examples of curve )(ag : )(1 ag  ( 150 =a , 291 =gµ , 

31 =gσ ) and )(2 ag  ( 150 =a , 292 =gµ , 52 =gσ ). 

 

Figure B.1. Examples of Gamma distribution 

-
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The following graph shows in three-dimensional form the surface of )(ag , using )(1 ag  as the start 

curve and )(2 ag  as the end curve. The curves between )(1 ag  and )(2 ag  are derived based on 

linear interpolation vis-à-vis the standard deviations. 

 

 

 

Age 

)(1 ag  

)(2 ag  
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Figure B.2. Three-dimensional presentation of )(ag  surface 

S1 0.000.030.060.090.120.15

 

The n
th absolute moment (about zero or origin) of )(ag  is defined as ∫

∞

⋅=

0

)]([ˆ
a

n

n daagagM , 

where n is a non-negative integer. Let 0aau −= , then we have 0≥u , 0aua += , and duda = . 

Hence, 

 ∫∫
∞

⋅−

∞

⋅⋅+⋅=⋅=
0

0 ])[()]([ˆ

0

dueuauKdaagagM uBAn

a

n

n  

 ∫ ∑
∞

=

⋅−−








⋅⋅








⋅⋅

−⋅
⋅=
0 0

0)!(!
!

dueuau
ini

n
K

n

i

uBAiin  

 ∑ ∫
=

∞

⋅−−+












⋅⋅

−⋅
⋅⋅=

n

i

uBinAi dueu
ini

n
aK

0 0

)(
0 )(

)!(!
!

 (B.2) 

Let ∫
∞
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− ⋅=

0

)( )( dueuU uBinA

in , then it is obvious that 1)(
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0 =⋅⋅=⋅ ∫
∞

⋅− dueuKUK uBA  or KU 10 = . 

Further, we have 
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By Taylor series expansion, we have 
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Taking a positive integer m, such that nAm +> , then we have 
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Specially, we have 
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Therefore, we have 

 

(i) Mean of )(ag  
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(ii) Variance of )(ag  

 2
12

2 )ˆ(ˆ)]()[(
0

gMgMdaaggagv

a

−=⋅−= ∫
∞

µ  

 2

2

2

11)2()1(
B

A

B

A

B

AA +
=







 +
−

+⋅+
=  (B.13) 

 

(iii) Standard deviation of )(ag  
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(iv) Skewness of )(ag  
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(note that 1+=⋅ ABgσ , therefore 2
33 )1()( +=⋅ ABgσ ) 

 

(v) Kurtosis of )(ag  
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(note that 1+=⋅ ABgσ , therefore 24 )1()( +=⋅ ABgσ ) 

 

From equation (B.12), we have 0
1

ag
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A
−=
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µ . Therefore, from equation (B.13). we have 
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It then follows that 
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The first derivative of )(ag  with respect to a is as follows: 
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 )]([)(])([ 0
)(1

0
0 aaBAeaaKag

aaBA

a −⋅−⋅⋅−⋅=′ −⋅−−  (B.19) 

By setting 0])([ =′
aag , we obtain 

B

A
aa += 0  (ignore 0aa = ). This tells us that the curve )(aγ  

attains its maximum at 
B

A
aa += 0max . Since 01max >=− Bagµ , we have maxag >µ . This 

implies that curve )(ag  is always positively skewed (i.e. with the longer tail always on the right-

hand side of the curve). 

 

In terms of data fitting using the gamma function, the following method can be used. Taking the 

natural logarithm on both sides of equation (B.1), we obtain 

 )()ln()ln()](ln[ 00 aaBaaAKag −⋅−−⋅+=  (B.20) 

where 0aa > . Let )](ln[ agy = , )ln(0 K=θ , A=1θ , B−=2θ , )ln( 01 aax −=  and 02 aax −= , 

then equation (B.16) becomes: 

 22110 xxy ⋅+⋅+= θθθ  (B.21) 

By applying bivariate linear regression to equation (B.18), we can obtain the estimates for 

coefficients 0θ , 1θ  and 2θ  (denoted as 0̂θ , 1̂θ  and 2̂θ , respectively). Then we have 0θ̂
eK = , 

1̂θ=A , and 2̂θ−=B . 

 

 

█ 
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