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On the Relationships between Period and Cohort Fertility — by Lu Lei (China)

1. Introduction

The relationships between period and cohort fertility measures have been one of the central issues in
demography. In this regard, Ryder (1960, 1964) was one the first pioneers in trying to establish the
relationships mathematically, who also coined the term “demographic translation” for the process.
Since then, many researchers have made contributions in terms of improving and extending the
original translation equations developed by Ryder (e.g. Foster, 1990; Ni Bhrolchain, 1992; Bongaarts
and Feeney, 1998; Keilman, 2000; Kohler and Philipov, 2001; Zeng and Land, 2002; Rodriguez,

2006), and a number of important results have been achieved.

However, there has been, to some extent, a lack of a unified analytical framework, which connects
the dots in a more systematic way. This paper attempts to further examine the quantitative

relationships between period and cohort fertility based on a unified analytical framework.

2. A general relationship between period and cohort fertility

In demography, age, period and cohort are three key dimensions and the Lexis diagram is a powerful
tool to facilitate age-period-cohort (A-P-C) analysis. The Lexis diagram provides a graphical
representation of the relationships among age, period and cohort. Figure 1 shows a portion of the

Lexis diagram, in which we have the following correspondences:

m  Cohort-age analysis (i.e. cohort y and age a) corresponds to parallelogram DGHE, which

crosscuts two years (i.e. -1 and ¢) and is called the cohort-age parallelogram.

m  Period-cohort analysis (i.e. year t and cohort y) corresponds to parallelogram DHEA, which

crosscuts two ages (i.e. @ and a+1) and is called the period-cohort parallelogram.

m  Period-age analysis (i.e. year t and age a) corresponds to square DHIE, which crosscuts two

cohorts (i.e. cohort y and cohort y+17) and is called the period-age square.

m  Age-period-cohort analysis (i.e. age a, year t, and cohort y) corresponds to triangle DHE,

which is called the age-period-cohort triangle.

When discussing measures of demographic events (e.g. fertility), it is very important to be clear about

which geometric shape is addressed. For example, the conventional (period) total fertility rate (7FR)
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is defined as the sum (total) of the age-specific fertility rates based on the squares (i.e. the period-age

squares) of the corresponding year.

Figure 1. Lexis diagram for age-period-cohort analysis

Year -1 Year ¢
A B C

at2

Age a+1

a
G H 1

Cohort y Cohort y+1

Since the focus of this paper is on the relationships between period and cohort fertility, the geometric
shape to be used is the period-cohort parallelogram (i.e. DHEA in Figure 1). Therefore, for the
purpose of this paper, the Lexis diagram in Figure 2 is used as a unified analytical framework for
examining the quantitative relationships between period and cohort fertility. When Figure 2 is read
horizontally, it relates to age analysis (i.e. age-period, or age-cohort); when Figure 2 is read
vertically, it relates to period analysis (i.e. period-age, or period-cohort); when Figure 2 is read

diagonally, it relates to cohort analysis (i.e. cohort-age, or cohort-period).

Suppose that year ¢ is the period under study. From Figure 2, it is obvious that women who are aged a

at the beginning of year # must be born in year /—a—1." Now we define a few variables as follows.

Let Wy‘ represent the number of women who were born in year y (y = ¢-50, t-49, ..., -16), where the
superscript ¢ stands for cohort. Obviously, W[ constitute a birth cohort. For women of birth cohort

y (i.e. diagonal in Figure 2), let W (a) represent the number of women who are aged a (a = 15,

16, ..., 49) at the beginning of the corresponding year. We assume that there is no mortality before

the end of women’s reproductive lifespan, then we have W (15)=W (16)=---=W (49)=W].

! Please note that in this paper, age a always refers to the age of women at the beginning of a corresponding year.
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Figure 2. Lexis diagram — A unified analytical framework

Calendar year
Age t
Si50(49) S (49)
49
.fri(aﬂ) (@)
a
Sian(16) S5,(16)
16
S (15) f5:15)
15
Birth cohort
(year of birth) t-50 .. t-(atl) . t-17 t-16
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Let B, denote the total number of live births that W delivered during their entire reproductive
lifespan and Bj(a) denote the number of live births that W[ delivered during the year at the

beginning of which the women were aged a. Here, Bj(a) corresponds to the parallelogram

49
concerned. It is obvious that B; = ZB; (a).

a=15

For birth cohort y, we define its (cohort) age-specific fertility rates as follows:
fi(a)=B(a)/W:(a), a=15,16,...,49 (2.1)
Please note that the f(a) defined above are actually cohort-period measures, i.e. they are based on

the cohort-period parallelogram (i.e. DHEA in Figure 1), not the cohort-age parallelogram (i.e.
DGHE in Figure 1).

For birth cohort y, we define its (cohort) lifetime fertility rate (LFR) as the average number of live

births that W delivered during their entire reproductive lifespan, i.e. LFR = B] / W; . Then, we

have

ZBC(‘Z) 49 pe c 49
g , (@) B,(a)
-y

LFR =5 - ~2 2N £ (a) 2.2)
’ Wy (;:5 y a= ISW ( ) (;:5 g

Equation (2.2) indicates that, for each birth cohort (), its lifetime fertility rate equals the sum of the

cohort age-specific fertility rates.”

For birth cohort y, the sequence { fy”(a)| a=15,16,..., 49} constitutes an age distribution of the
lifetime fertility rate of the cohort (i.e. LFR ). For the sequence { fy"(a)| a=15,16,..., 49}, we
define its standardized age pattern (schedule) of fertility as {h;(a)| a=15,16,...,49}, where

h;(a)zfy”(a)/LFRy, a=15,16,...,49 . It is obvious that 4 (a)=20 (a=15,16,...,49) and

49
Zh; (a) =1. From the definition above, we see that for birth cohort y, 4 (a)% of the LFR, was

a=15

born in year y+a+1, at the beginning of which, the women were aged a. From the above

definitions, we obtain /% (a) = B} (a) / B, a=15,16,...,49. Furthermore, we have
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fi(@=h(a)-LFR, , a=15,16,...,49 (2.3)
Equation (2.3) indicates that /(@) can be expressed as the product of two cohort factors, one is a
cohort fertility level factor (i.e. LFR,), the other is a cohort fertility timing factor (i.e. /;(a) ).

Therefore, any cohort or period fertility measures based on f"(a) will have a level component and

a timing component.

Now let’s look at the Lexis diagram in Figure 2 from a period perspective. It is obvious that, for year
t, we have two period curves of age-specific fertility rates, i.e. { ]‘,i(a+1)(a)| a=15,16,..., 49} and
{hf_(a+l>(a) | a=15,16,..., 49} . For convenience hereafter, we denote f"(a)=f’,,,(a) and
hf(a)=h_.(a), a=15,16,...,49, where the superscript p stands for period. Then we have
fP(@)=h!(a)-LFR,_,.,, a=1516,...,49 (2.4)

Now, we define the (period) total fertility rate (7FR) for year ¢ as follows:

TFR, = f£16(15)+ £ (16) ++ £, (49) = D £ (@) = D £ (@) (2.5)

a=15 a=15
Please note that the definition of the total fertility rate of year ¢ (i.e. 7FR,) above is based on the age-

specific fertility rates that correspond to the concerned cohort-period parallelograms, while the
conventional 7FR is based on the age-specific fertility rates that correspond to the concerned period-

age squarces.

From equations (2.4) and (2.5), we have

TFR, =Y f7(a)=) [k} (a)- LFR, ] (2.6)

a=15 a=15

49
Define G, = Zh,” (a), then equation (2.6) can be rewritten as

a=15
[ (@ 7R
TFR,=G,- ) || === |- LFR,_.,, |=G,-LFR, 2.7)
a=15 t
. . . o & kP (a) .
where G, is a period (year f) adjustment factor, while LFR,=Z ———|'LFR_,,, | 1s a
a=15 t

% This is probably the origin of the term — total fertility rate.
3 Many researchers call the fertility level factor the quantum component and the fertility timing factor the tempo component.

Page 5



On the Relationships between Period and Cohort Fertility — by Lu Lei (China)

weighted average of the concerned (cohort) lifetime fertility rates. Equation (2.7) shows that, under
the assumption of no mortality before the end of the reproductive lifespan, the (period) 7FR in year

t (as defined in equation (2.5)) can be decomposed into two components, i.e. a level (quantum) factor

(i.e. LFR/)and a timing (tempo) factor (i.e. G,).

Mathematically, equation (2.7) provides a general expression for the quantitative relationship
between the (period) total fertility rate and the corresponding (cohort) lifetime fertility rates. Butz and

Ward (1979) noticed the relationship expressed in equation (2.7) and called the quantity G, the

timing index (TI), and the quantity LFR; the average completed fertility (AC).

Equation (2.7) also provides a way for decomposing the change in the (period) total fertility rate into

different factors as follows:

TFR, —TFR =G

t+1

'LFRH—] - Gt . LFRz = E

level

+F

timing

+1 (2.8)

where E, =G, (LFR+1 —LFR,) is the net effect of the change in the fertility quantum component

level

(i.e. assuming that the fertility tempo component remains unchanged from year ¢ to year ¢+1);

E

timing = (

G,,,—G)-LFR: is the net effect of the change in the fertility tempo component (i.e.
assuming that the fertility quantum component remains unchanged from year ¢ to year #+1); and

1=(G

t+1

—G,)-(LFRi+1—LFR,) 1is an interaction term, which reflects the joint effect of the

simultaneous changes in both the fertility tempo and the fertility quantum components.

By its definition, the period quantity G, is affected by the childbearing behaviors of the concerned
birth cohorts (i.e. #-50, #-49, ..., -16) in year ¢. Theoretically, G, can take numerical values between

0 and 35. If all women of all the birth cohorts (i.e. -50, #-49, ..., -16) do not give any births in year ¢,
then G, =0 (because in this case, we have &, (15)=h _,,(16)=---=h ,(49)=0). If all women of

all the birth cohorts (i.e. #-50, #-49, ..., t-16) deliver all their (lifetime) births in year ¢, then G, =35
(because in this case, we have A’ (15)=h ,(16)=---=h . (49)=1). Obviously, the above
situations are two extremes. In reality, the numerical values of G, usually fall between 0.5 and 1.5.

It is also obvious that if all the birth cohorts of women (i.e. #-50, t-49, ..., t-16) follow the same

standardized cohort age pattern of fertility, then G, =1.
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49
Let Ht”(a):h,”(a)/G,, a=15,16,...,49, then it is obvious that H/(a)=0 and ZH,p(a)zl.

a=15
Therefore, {Htp (a)| a=15,16,...,49} constitutes a standardized period (year f) age pattern

(schedule). Thus, equation (2.7) can be rewritten as

49
TFR,=G,- ) [H/(a)-LFR, ;] (2.9)

a=15

Suppose that LFR can be expressed by the following n"-degree polynomial of y:

LFR, =2+ A y+ Ay ++ 2,y =Y (A-¥) (2.10)
i=0

where n is a non-negative integer and A, i=0,1,2,...,n, are the polynomial coefficients. Let

T =t—1, then from equations (2.9) and (2.10), we have

TFR =G, - Z{H”(a) Z[/l (T -a) ]} Zn:{/ii-Z[(T—a)i-Ht”(a)]} (2.11)

a=15 i=0 a=15

a=15

Let O, Z{ Z[(T a) -HY (a)]} , then equation (2.11) becomes

TFR =G, -0, (2.12)

In other words, under the polynomial assumption about LFR , we have LFR,=Q, .

By the binomial theorem, we have

i_ i i =i (N J i i—j
(T—a)—;[(j!(i_j)!jT (a)} 2 {( 1y ('(l ])JT a} (2.13)

Therefore, we obtain

0, Z{ ST -a -Hf(a)]}

a=15

:,-_o{ﬂ’ { {( D’ (—, (llj)J Ti‘f-a-/-H,p(a)}}}

i Z{i | 0{(-1)1‘ ( - j>J’T EENCAVA wﬂ} .14)

a=15

~.
I
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To further explore the period quantity Q,, we need to examine the period curve H/(a). In this
connection, the (statistical) moments are important measures for describing H/”(a). There are two

types of moments for describing a probability distribution, i.e. the absolute moments (about zero or

origin) and the central moments (about the mean). Suppose that function p(x) represents a

probability distribution (i.e. p(x) satisfies p(x)=>0 and Z p(x)=1), then its moments are

all x

defined as follows:

The #" absolute moment (about zero or origin) of p(x) is defined as

M, (p)= D [x"- p(x)] (2.15)

all x

where r is a non-negative integer. It is obvious that M0< p>=1 and M1<p>=,u<p>, where

= [x- p(x)] is the mean of p(x).

all x

The " central moment (about the mean) of p(x) is defined as

M, (p)= [(x—u{p) - p(x)] (2.16)

all x

where r is a non-negative integer. It is obvious that M0<p> =1, Z\Z<p>=0, and M2<p>=v<p>,

where v(p)= Z [(x—u(p))* - p(x)] is the variance of p(x).

all x
Other relevant properties of the moments are given in Annex A.

From equation (2.14), we have

0, Z{ﬂ Z{( 1’ ( ,(l' ])'] T .M, <HP>} (2.17)
It is obvious from equation (2.17) that
Oy =4 'M0<Hzp> =4

\ j d! d-j 1 P _ (2.18)
Qd_Qd_lmd-;{(—l) (WJT -M_/<Ht>}, d=1,2,...,n
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Once the polynomial coefficients A, i=0,1,2,..., n, are known, equation (2.17) shows that Q, is

a linear function of the absolute moments of H/(a),i.e. O, can be written in the following form
0, =X+ (A-M{H!) (2.19)
i=1

Equation (2.19) shows that O, is determined by the polynomial coefficients and the absolute

moments of the period curve H/(a).

Based on the general relationship, expressed in equation (2.12), we will explore some specific
relationships between the (period) total fertility rate and the (cohort) lifetime fertility rates. In this

regard, we will look at the period level component (i.e. Q,) and the period timing component (i.e.
G,) separately, as the two components may be considered “independent of each other” from a

mathematical point of view.

3. Some specific expressions of O,

3.1 The (cohort) lifetime fertility rate remains constant over time (birth cohort)

Under this assumption, we have LFR,_ =LFR _,,=---=LFR, ,,, denoted as LFR . This is
equivalent to taking n=0 in equation (2.10). Therefore, LFR =LFR=4,. Then from equation
(2.18), we have Q, = A, = LFR . In this case, we have

TFR, =G,-Q,=G,-LFR (3.1)
Equation (3.1) shows that even if the level of cohort fertility (i.e. lifetime fertility rate) is invariant

over time (cohort), the (period) total fertility rate may be greater than, equal to, or smaller than the

(cohort) lifetime fertility rate depending on the period adjustment factor for year ¢ (i.e. G,).If G, =1
(women procreate in year ¢ “normally”), then we have TFR, = LFR.If G, >1 (women “favor” year
t in terms of childbearing), then we have TFR, > LFR.If G, <1 (women “avoid” year ¢ in terms of

childbearing), then we have TFR, < LFR.

3.2 The (cohort) lifetime fertility rate changes linearly with time (birth cohort)

This is equivalent to taking n=1 in equation (2.10), i.e. LFR =/4,+4 y. Then from equation

(2.18), we have
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0 =0y +A4 - (T-M{H!) =4+ A4 (T -M,(H})) = LFR, ;1 = LFR (3.2)

t=(u(HP)+D)

In equation (3.2), LFR is the lifetime fertility rate of birth cohort #— (,u<H,” > +1), which

~(u(HP )+1)
is aged ,u<H;” > at the beginning of year ¢. Figure 3 shows the relationship between (, and
,u<H;”>.

Figure 3. Relationship between O, and ,u<H,” > .

LFR, (4, >0) "
LFR, (4, <0)

- H!(a)

Q-

,;1<H,p> Age

Equation (3.2) shows that under the linear assumption, Q, is affected by the mean of the period

curve H/(a), but not affected by its shape (e.g. variance, skewness, kurtosis).

In this case, we have

TFR =G,-0,=G, - LFR (3.3)

t—(ﬂ(H,”>+1)
Equation (3.3) indicates that, under the assumption stated above, the mean age of the standardized

period fertility curve H/(a) (i.e. ,u<H,P > ) plays a key role in determining the total fertility rate for

year t (i.e. TFR)).

Based on the data from China’s 2% fertility survey conducted in 1988, we produced Figure 4, which

shows that the (cohort) lifetime fertility rates (LFR) of Chinese women born during 1931-1950

declined almost linearly with time (cohort), with the coefficient of determination being R>=0.99.
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In producing Figure 4, ,u<H r > was set at a constant of 29 years of age.

Figure 4. The values of LFR , TFR, and G, - China
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3.3 The (cohort) lifetime fertility rate changes quadratically with time (birth cohort)
This is equivalent to taking n=2 in equation (2.10), i.e. LFR =/ +4 y+4,- y*. Therefore
from equation (2.18), we have
Q, =0 +A [T"=2-T-M,(H})+ M,(H!)]
=0+ /12 (T _M1<Hzp>)2 +M2<Hzp> - (M1<Hzp>)2]
= Ay + A (T=M(H )+ A, - (T = M,(H}))
+ ﬂz [M2<Hzp> - (M1<Hzp>)2]

SLFR o+ D,(H/)

— 2

=LER )+ e (a{Hf}) (3.4)

In equation (3.4), LFR_, is the lifetime fertility rate of birth cohort #—(u({H/)+1) (which

HY ) +1)
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is aged ,u<H r > at the beginning of year 7), and A, - (O'<H r >)2 is a modification term. It is obvious
that (i) when A, >0 (i.e. the parabola opens upwards), the modification term is positive, and (ii)
when A4, <0 (i.e. the parabola opens downwards), the modification term is negative. Equation (3.4)
also shows that under the quadratic assumption, @, is not only affected by the mean of the period

curve H/(a), but also affected by its standard deviation. In this case, we have

TFR =G, -0, =G, -[LFRl_(ﬂ<H/,>H) + 4, - (o(H >)2} (3.5)

3.4 The (cohort) lifetime fertility rate changes cubically with time (birth cohort)
This is equivalent to taking n=3 in equation (2.10), i.e. LFR =2, +4 y+4 VA
Therefore from equation (2.18), we have

Q,=0,+ A [T =3-T* - M(H!)+3-T-M,(H! )~ M,(H})]
= Ao+ A (T=M(H! )+ A (T = M(H! )Y + A (T = M(H!))’
+2,-D,(H!)
+2,-(3-T-D,(H!)~D,(H!))
=LER e Dy(H!)+ 4 -(3-T-Dy(H! )~ D,(H/)) (3.6)
Since
3-T-D,(H!)-D(H!)=(o(H!)) - 0,
where @ =3-T—3-u(H/)-o(H!)-s(H}), equation (3.6) can be rewritten as
Qs = LR .y o (o(H? ) + A (o(H! ) - ,
SLER ey (ot ) (o(H!)) (3.7)
In this case, we have

TFR =G, -0,=G, - [LFR{_MH’F%I) +(h+ A o) (6<H,”>)2} (3.8)

3.5 The (cohort) lifetime fertility rate changes quartically with time (birth cohort)

This is equivalent to taking n=4 in equation (2.10), ie.
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LFR, =) +4 y+A -y + Ay +4,-y*. Therefore from equation (2.18), we have
Q, =0+ A [T =4-T* - M,(H!)+6-T> - M,(H!)=4-T - M,(H )+ M,(H/)]
= Ao+ A (T =M,(H? )+ 2 - (T = M,(H? )Y + A - (T = M,(H?))’ + A, -(T = M,(H))*
+2,-D,(H})
+ 25+ (3-T-D,(H} )~ Dy(H} )

+24-(6-T”-D,(H?)=4-T-Dy(H! )+ D,(H}))

=LER (o(H? ) + A -[3-T-Dy(H!) - D,(H})]
+2,-[6-T>-Dy(H)=4-T-D(H!)+D,(H} )] (3.9)
Since
6-T7-D,(H})—4-T-D(H)+ D,(H!)=(o(H!)) - o, (3.10)

where @, =6-T" =6 u(H/)-(2-T =1)~4-0(H/)-s(H!)-(T = u(H )+ (o(H )’ - k{H/),
equation (3.9) can be rewritten as

Qu=LFR .+ Ao (O(H] )Y + 40y (0{HI ) + 4y 0, (0 H] )Y

=LFR ey et A @4 2 0,): (o(H?)Y (3.11)
In this case, we have

TFR, =G,-0, =G, - [LFRI_MH”H) +(hL+ A4 -0+ ) (0'<H,”>)2} (3.12)

4. Specific expressions of G, - Assumption I

49
From the discussions above, we have noticed that the period quantity G, = th” (a) (foryeart¢)isa
a=15

very important factor in terms of linking the (period) total fertility rate to the corresponding (cohort)

lifetime fertility rates.

Following a similar approach of Ryder (1964), we assume that for each age a, the time sequence

{ hy(a) | y=t-50,t-49,...,t— 16} can be represented by the following m™-degree polynomial of y:
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k(@)= By(a)+ B(a)- y+ By (@) y* +---+ B,(a)- y" = Y [B(a) '] (4.1)
i=0
where m is a positive integer and S (a), i=0,1,2,..., m, are the polynomial coefficients. Since for

49
each birth cohort y, we have Zh; (a) =1, it follows that

a=15

ii[ﬂ[(a)-yi] = Zm‘,ﬂ > ﬁ,-(a))y’} =1 (4.2)

a=15i=0 i=0 a=15

49
Let 7, = Z p.(a), then we have

a=15

By + - Y+ Y 44 7, y" =D (7, ) =1 (4.3)

i=0

We define an mth-degree polynomial of y as follows: ¢, (y)= Z(”i -y")—1, where 7, #0, then it

i=0
is obvious that the polynomial ¢, () has 35 real (integer) roots, i.e. y = ¢-50, t-49, ..., -16. It can be
proved that when m <35, there must be 7,=1 and 7,=0 (i=12,...,m ). (Proof by
contradiction: If 7, #0, then according to the fundamental theorem of algebra, the polynomial
g, () has at most m real roots, which contradicts the fact that the polynomial ¢, (y) has 35 real
roots). Therefore, we have 7z, =0. Following the same logic, we have 7, , =0, ..., 7,=0.

Hence, from equation (A.3), we have 7z, =1.

From the definition of G, and letting 7 =¢—1, we have

m

G, =Y h(a)=D I (@@= [B(a)(T-a)] (4.4)

a=15 a=15 a=15i=0

Then by applying the binomial theorem to equation (4.4), we have

NN N 1! iej
G’_a_lsl-_o{ﬁ"(a) Z{( g (j!-(i—j)!j ! a}}

Equation (4.5) provides a general expression for G,, under assumption expressed in equation (4.1).
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For each birth cohort y, we denote the mean age of the standardized cohort fertility schedule 7] (a)
as ,u<h;>, y=t-50,t—-49,...,t—16, then we have
' 49 ’ 49 m ) m 49 )
u(hS)=> [a h(a)]= Z{az[ﬁi(a)-y’]} = Z[(Z[a-ﬁi(a)]]'yi (4.6)
a=15 a=15 i=0 i=0 a=15
Equation (4.6) shows that under the assumption stated in equation (4.1), ,u<h;> is also a polynomial

of degree m.

For each birth cohort y, we denote the variance of the cohort fertility curve hj(a) as v<h;> , then we

49

have v(h() =" [(a—u(h))-h(@)],y =50, 49, ..., #-16, and

a=15

49 49

i) = 2l @l ) = Z{az -(i[ﬁ(a) - yl‘]ﬂ ~(u{ls)y?

a=15 a=15

g5 i

a=15
Equation (4.7) shows that under the assumption stated in equation (4.1), v<h;> is a polynomial of

degree 2-m.

Now, let’s consider two specific cases.

4.1 For each age a (a=15,16,...,49), the time sequence {h;(a)| y=t—50,t—49,...,t—16} can

be represented by a linear function of y

This is equivalent to taking m =1 in equation (4.1), i.e. hj(a)= S (a)+ f(a)-y, where [ (a) is

the intercept and f(a) is the slope of the straight line. Then, from the discussion above, we know

49 49
that 7, = Z B(a)=1 and 7 = Z B, (a) =0. Therefore, from equation (4.5), we have

G, =Y B(@)+T- > B(a)-[af(a)]=1- [a- S (a)] (4.8)

In the mean time, from equation (4.6), we have
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u(his) = la- ﬁo(a)]{Z[a'ﬁl(a)]j y (4.9)

a=15 a=15
Equation (4.9) shows that under the assumption stated, the mean age of the standardized cohort

fertility schedule h; (a), y=t—-50,t—49,...,t—16, is also a linear function of the birth cohort (y),

49 49
with the intercept being Z[a' B,(a)] and the slope Z[a- pB,(a)]. From equation (4.9), we also

a=15 a=15

49

have Z[a pi(a)]= i : (/’l<htc—16> - :U<hzc—50 >) .

a=15

49
Let = Z[a - B,(a)], then equation (4.8) becomes G, =1—¢, where ¢ is the slope of ,u<h;> .In

a=15

other words, under the assumption stated, G, is equal to one minus the slope (rate of change) of the

mean age of the cohort fertility curve h; (a),y =150, 149, ..., t-16.

Taking the first derivative with respect to y on both sides of equation (4.9), we obtain

()], = [a- (@)= (4.10)

a=15

Therefore, G, can also be writtenas G, =1—[ ,u<h; >]'y .

Under different assumptions, Ryder (1964) obtained a similar result by using the moment approach.

It is obvious from equation (4.10) that (i) if the mean ages of the standardized cohort fertility curves

h;(a) increase from cohort to cohort (i.e. women postpone childbearing), then [,u<h;'>]’y >0 and
therefore G, <1; and (ii) if the mean ages of the standardized cohort fertility curves /;(a) decrease

from cohort to cohort (i.e. women advance childbearing), then [ ,u<h; >]’y >0 and therefore G, >1.

From equation (4.7), we have the variance of the cohort fertility curve hj(a) (v = £-50, 1-49, ..., -

16) as follows

i)=Y B {fw -A(a)]j = (ulhe))? @.11)

a=15 a=15

Equation (4.11) shows that under the assumption stated, the variance of the cohort fertility curve
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hi(a) (v =1-50, t-49, ..., t-16) is a quadratic function of the birth cohort (y), with the coefficient of

49 2
the quadratic term (i.e. y*) being —(Z[a-ﬁl(a)]] (<0). Therefore, v<h;> (v =t-50, t-49, ..., t-

a=15

16) is a parabola, which opens downwards.

49

wlH )= Y la Y @] = Y la @)= D [a- b (@]

:Gi-2{a-[ﬁo<a>+/i<a>-<r—a—1>]}
=GL-{Z[a-ﬁo(a)]+(t—l)' Sla-Bi@]- e '/)z(a)]} @.12)

Substituting equation (4.8) into equation (4.12), we have

la-By@l+ =1 [a-B(@)]- D [a* B(a)]
Il’l<Htp>: a=15 a=15 a=15 (4.13)

49

1= [a- f(a)]

a=15

Next, we will conduct a numerical simulation so that we can have a concrete understanding of the
theoretical relationships discussed above. For this purpose, we will use the following Gamma

function for the simulation.

2(a) :{ K-(a—ay)*-e P, when a2a, 4.14)

0, when a<a,

The properties of the above-defined Gamma function are discussed in detail in Annex B.

Suppose that (i) the standardized cohort fertility schedule {hf_so (a) ‘ a=1516,..., 49} (i.e. the oldest
birth cohort) follows a Gamma function with a mean of 28 and a standard deviation of 5, and (ii) the
standardized cohort fertility schedule {hf_m(a) ‘ a=15,16,..., 49} (i.e. the youngest birth cohort)

follows a Gamma function with a mean of 32 and a standard deviation of 5. All the standardized
cohort fertility schedules between the oldest and the youngest birth cohorts are then generated by

linear interpolation age by age between the oldest and the youngest birth cohorts, i.e. for each age a

(a=15,16, ...,49),the h (a) is calculated as follows:
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hi(a)=h_s(a)+Ala)[y—(t—50)], y=t-49,1-48,...,t-17 (4.15)
where A(a) =[hs(a)—h 5 (a)]/34. It can be easily proved that A (a) generated as per equation

49
(4.13) satisfies h{(a)20 and ) h(a)=1.

a=15

Figure 5. Intercept by age (i.e. S,(a))

20

0.0

N

Age

-2.0

Figure 6. Slope by age (i.e. [, (a))

0.002

- /—\

-0.002

Age
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Figure 7. Mean ( (4. )) and variance (v(4)) of & (a)
y y Yy

34.0

220

t-50 t-16
Birth cohort ()

4.2 For each age a (a=15,16,...,49), the time sequence {h;(a)| y=t—50,t—49,...,t—16} can

be represented by a quadratic function of y

This is equivalent to taking m=2 in equation (4.1), ie. hj(a)=pf(a)+f(a)-y+ B, (a): Y.

49 49
Then, from the discussion above, we know that 7, =Z B(a)=1, =, =Z B (a)=0 and

a=15 a=15

49
T, = Z B, (a) =0 . Therefore, from equation (4.5), we have

a=15

49

G =Y B(@=-YlaB(@)]-2-T-Y [a-By(a)]+ Y [a’ By(a)]

=1-Y[a-B(@)]-2-T- Y [a-fy(@)]+ ) [a’ - B,(a)] (4.16)

In this case, the mean age of the standardized cohort fertility curve 7, (a) is

ulh)=> la- ﬁo(“)]+(z[“ ' ﬂl(“)]j Y+ (Z[a : ﬁz(a)]j -y (4.17)

a=15 a=15 a=15
Equation (4.17) shows that under the assumption stated, the mean age of the cohort fertility curve
h;(a) is also a quadratic function of the birth cohort (). The variance of 4 (a) is

49

W)= X @ —p(h;)) Iy (a)] = 3l i)~ (u(h;)y

a=15 a=15
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=>[a"- By(a)]+ (Z[az -ﬁl(a)]J .y +(Z[a2 'ﬁz(a)]J ¥ = (u(h)) (4.18)

Equation (4.18) shows that under the assumption stated, the variance of the cohort fertility curve

h;(a) is a quartic function of the birth cohort (y). From equation (4.16), we obtain

(e ) +v(hS) = Z[a ﬁo(a)]{Z[a ﬁl(a)]j y+(2 Z-ﬁz(a)]j-yz (4.19)

a=15 a=15 a=15

Taking the second derivative with respect to y on both sides of equations (4.17) and (4.19), we have

[u(he)T, =2 i[a - B,(a)] (4.20)
(e ) +v(B5)T, =2 f}[az - By(@)] (4.21)

Incorporating equations (4.20) and (4.21) into equation (4.14), we get

G =1- i[a-ﬂl(a)]_r.[ﬂ@;ﬁ; +%.[(ﬂ<h;>)2]’; +%.[v<h;>]'; (4.22)

a=l15

From equation (4.17), we have

(kS )= Z[a ﬁo(a>1+(2[a A(a)]j (T - 49)+(Z[a ﬁz(a)]j (T - 49y’ (4.23)
(Bt ) = Z[a ﬂo(an{z -ﬁl(a)]j-(T—lS){Z[a-ﬁz(anj-(T—lsf (4.24)

where T =t —1. Subtracting equation (4.23) from equation (4.24), we obtain

p{Re 1) = (g ) =34 Sla- A(@)]+ (68T ~2176) Y [a - fy(a)

a=15 a=15

—134. Z[a-ﬂl(a)]+(6&T—;2176j-[,u<h;>];

=34. i[a  B(@)]+(34-T —1088)-[u(h )T, (4.25)
Therefore, we have
f{a B(@)]= i[ (B o) = (B o))~ (34T =1088) - [ah)T, | (4.26)

a=15

Finally, equation (4.22) becomes
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G, —1——[(ﬂ<h,‘ ) = (e o)) = (34T =1088) [u(hS)T, |
_T.[ﬂ<h;>]’;+%.[(y<h;>)2 ;[v< >]’;
— 1= L) = (i )= 357 = 1088)- a1 |

1 A2y, | \yr
o [(ﬂ<hy>)2]y o [v<hy>]y (4.27)
where ,u<hf_16>— ,u<hf_50> can be regarded as the amount of “shift” between the two standardized

cohort fertility schedules 4, ,,(a) and A (a).
5. A specific expression of G, - Assumption II

We assume that, for each birth cohort y (y = #-50, #-49, ..., t-16), its standardized fertility schedule

50
h;(a) is a continuous function of age a. Therefore, we have hj(a)=0 and Ih;(a)dazl. In
15

addition, we designate the birth cohort #-50 (i.e. the birth cohort that reached the oldest childbearing

age at the beginning of year ¢) as the benchmark cohort. For /;(a), we symbolize its mean, variance,

skewness and kurtosis as follows:

Mean: (h j[a h (a))da (5.1)
Variance: v(h j [(a—p{h2))* - () da (5.2)
Skewness: %h;)—j(%}%ﬁh;@) a (5.3)
Kurtosis: k<h§>—I_ %ﬁ]‘-h;(a) a (5.4)

where G<h;> = v<h§ > represents the standard deviation of /] (a).
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Now, we assume that each cohort curve hj(a),y = 1-49, 1-48, ..., t-16, shifts along the age-axis by a
constant amount & (with no change in the shape of the curve, see Figure 8) relative to the curve of
the preceeding birth cohort (i.e. y-1), i.e. A (a)=h; (a— 0),y=1t-49, t-48, ..., t-16. Hence, we have
b o (@) =h_so(a— (49 —a)- O) . Therefore, from equation (5.1), we have

50 50

wlhs) = [la- i (@)da = [[a-h_ (a—8)lda (5.5)

15 15

Let u=a—0J,then a=u+0 and da=du . Therefore, from equation (5.5), we obtain

50 50

wlhs) = [1+8) - by ()ldu = [[u- by @u)du + 8- [, (wydu = u(h_,)+ 5 (5.6)

15 15

Equation (5.6) shows that under the assumption stated, the mean age of /;(a) also shifts towards

the same direction (when o >0, the standardized cohort fertility curves shift towards the right side

of the age-axis (i.e. higher ages); when o <0, the standardized cohort fertility curves shift towards

the left side of the age-axis (i.e. lower ages)) and by the same amount (i.e. | o |) as compared to
h;_,(a). From equation (5.6), we have

p{h) = (g sy) +[y = (t=50)]-8, y=t-50,t-49,....,t-16 (5.7)
Therefore, ,u<h;> is a linear function of y. Taking the first derivative with respect to y on both sides,

we obtain [,u<h;>]'y =J.
Similarly, it can be proved that w(h¢)=v{k ), s(h;)=s(h},and k(hS)=Fk(h.,).

From the discussions above, we have

49¢

G = ihf(a) = ih,"_(am(a) = ihf_so(a —(49-a)-8)= Y I (1+6)-a—49-5) (5.8)

a=l15 a=15 a=15 a=15

In continuous form, equation (5.8) can be written as
50
G, = j (14 8)-a—49-8)da (5.9)
15

Let u=(1+06)-a—49-0, then we have da=du/(1+ ), where & #—1. Therefore, equation (5.9)

becomes
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)
G = j ¢ ((1+8)-a—49- 5)da_—f o) = 521_1+5 (5.10)

Figure 8. Parallel shifting of the standardized cohort fertility curves along the age-axis

K () I (@) hi(a)

8 (<0) §(>0) 4

Equation (5.10) shows that G, is a decreasing function of J (i.e. the larger the &, the smaller the
G,). Equation (5.9) also shows that (i) when all the concerned standardized cohort fertility curves are
exactly the same (i.e. 0 =0), we have G, =1; (ii) when the concerned standardized cohort fertility

curves shift to the right (i.e. to higher ages, but with no change in the shape) by the same amount (i.e.

0 >0) from one cohort to the next (i.e. women postpone childbearing), we have G, <1; (iii). when

the concerned standardized cohort fertility curves shift to the left (i.e. to lower ages, but with no
change in the shape) by the same amount (i.e. 0 <0) from one cohort to the next (i.e. women

advance childbearing), we have G, >1. For example, if 6 =0.1, then G, =0.91; if §=-0.1, then
G =1.11.

Equation (5.10) also shows that G, is a non-linear function of ¢ (i.e. a hyperbola with & #—1).
But when —0.10<6<0.10, G, is very close to a linear function of ¢ (with the coefficient of

determination R’ =0.997), i.e. on the interval [-0.10, 0.10], we have G,=1-3 (Actually, the
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power series expansion can be considered: ﬁ =1-6+6"-8"+6" -, where | §|<1). Since
+

[,u<h; >]'y =0, we have G =1- [,u<h;’ >]'y Here, we notice that G, is determined by the rate of
change ([ ,u<h;’ >]'y) in the mean age of the standardized cohort fertility schedule (/] (a)) almost in the

same form, under the two different assumptions (i.e. I and II).

Under a stricter assumption (i.e. constant cohort and period quanta), Zeng and Land (2002) obtained
a similar result as the one expressed in equation (5.9), who used the symbol 7, in their paper.

However, our analysis above shows that the assumption of constant cohort and period quanta is not

necessary for the result to hold.

Now, let’s take a look at the relationship between the mean ages of the standardized period and
cohort fertility curves. From the discussions above, we have

ﬂ(H,”>=Z[a-H,”(a)] Z[a hp(a)]—— Dla-h (@]

a=15 t a=15 t a=15

= Z [a-h o ((1+5)-a—49-5)] (5.11)
t a=15
In continuous form, equation (5.11) can be written as
pu(H;) L Ia 1 o ((1+8)-a—49- 8)lda (5.12)
t 15

Let u=(14+6)-a—49-6, then we have a=w+49-8)/(1+0) and da=du/(1+3J), where

0 # —1. Therefore, equation (5.12) can be written as

u(H! I [(u+49-8)- b ., (u)]du (5.13)

>G(1

Since G, =1/(1+9), equation (5.13) becomes

ﬂ<H,p>:$. J’ [(u+49-5)-h16_50(u)]du—$ J' [ hC oy (u)]du +49 - 5- j ¢ (u)du
:% (’u<h’c 5°>+49 9)= 'u<h; 5°> % (49—,u<hf_50>) (5.14)

50
where pu(hf )= j [ (u)ldu is the mean age of the standardized fertility schedule of the

15
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benchmark birth cohort (i.e. birth cohort #-50). Taking the first derivative with respect to d on both

sides of equation (5.14), we obtain [,u<H,P >]'(S =(49- ﬂ<hf;50>)'%>0. Therefore, ,u<H,” > is

+5)°

an increasing function of & (i.e. the larger the ¢, the lager the ,u<H r > ).

Since (k¢ 1) = u(h 5,)+34- 8 , it follows from equation (5.14)

() = Gl 415+ 0) = o)~ G ) =19) (5.15)

50
where ,u<ht‘ 16> I[u h «(u)]du 1is the mean age of the standardized age-specific fertility curve of

15

the birth cohort #-16.

From equations (5.14) and (5.15), it is obvious that (i) if 6=0, then u(H?)=pu(h' ), (i) if

0>0, then ,u<h, 50> < ,u<H”> < ,u< - 16> (iii) if <0, then ,u<hf_16> < ,u<Ht”> < ,u<hf_50> . For
example, assume ,u<h, 50> 28 , then ,u<hf_16>: 28+34-0 . Therefore, if 6=0.1, then

pu{h (o) =31.40 and u(H?)=29.91;if §=-0.1,then w(h )=24.60 and w(H/)=2567.

Next, let’s take a look at the relationship between the variances of the standardized period and cohort

fertility curves. From the discussions above, we have

v(H!)= fua —H(")) - H} (a)] = Gi fua —u(H ) B (a)]

a=15 t a=l15

:_ Z[(a w(H? ) I (@]

talS

:— Z[(a u(H7 )b o (1+8)-a—49-5)] (5.16)

talS

In continuous form, equation (5.16) can be written as

v(H) =— j(a u(HP ) B (1+8)-a—49-8))da (5.16)

t 15
Let u=(14+6)-a—49-6, then we have a=w+49-8)/(1+0) and da=du/(1+3J), where

0 # —1. Therefore, equation (5.16) can be written as

Page 25



On the Relationships between Period and Cohort Fertility — by Lu Lei (China)

1 fl(u+49-8 :
V<H’p>:G,-(1+5)'J.HuJ1r+5 _'U<Htp>j ’ht—so(”)}d”

15

1 T{u+49-5_ﬂ<hfso>+49-5

2
} 5o (u) |du

TG-(1+0) I\ 146 1+6
B 2
1 P (u-al )
= : e d 5.18
G, (1+6) 1[{ 1+6 o) C19)

Since G, =1/(1+ ), equation (5.18) becomes

A1 ¥ R G
v(H})= iT57 [ = pa{ o)) - B o )l = e vl 50) = (ST(J] (5.18)

15

Equivalently, we have G<H he > = c7<hf_50> / (1+J), where o stands for standard deviation. Equation
(5.18) shows that v<Ht” > is a decreasing function of ¢ (i.e. the larger the ¢, the smaller the
w(H?)). Tt is obvious that (i) if 8=0, then o(H/)=0(hy); (i) if 5>0, then
0'<Ht” > < 0'<hf_50> ; (iii) if 6 <0, then c7<Ht” > > 0'<hf_50> . For example, assume §<hf_50> =4, then

if §=0.1,then o(H/)=3.64;if 5=-0.1,then o(H/)=4.44.

Similarly, it can be proved that

S<H’p>:jf {%ﬁ] HY (@) da=s(h ) (5.20)
k<pr>:1) {%’W] H} @) | da=k{H o) (5.21)

where s and £ stand for skewness and kurtosis respectively.

Now, we discuss the relationship between the period and the cohort mean ages. It is obvious that
birth cohort y =¢-— (,u<H,p > +1) is aged ,u<H,P > (when ,u<H,P > is an integer) at the beginning of

year t. From equations (5.7) and (5.14), we have
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ﬂ<hf (ﬂ<,,p>m> Wl o)+ 1= HP )+ 1) = (6= 50)]- 6 = p{ Ity ) +149 - u( H )1-6
he 5, -0 , ,
= ,u<ht‘ 50> (49 - ,U< t_l 2_—;49 J 0= ,U<hzc—50> +%' (49 _ﬂ<htc—50>)

= u(H?) (5.22)
The above discussion indicates that, under the assumption stated, the mean age of the standardized

period fertility schedule H/(a) is the same as the mean age of the standardized fertility schedule of
the birth cohort y =¢-— (,u<H,P> +1) that reaches its mean age of fertility right at the beginning of

year ¢.

6. Relationship between the two period curves f”(a) and 4’ (a)

In the discussions above, there are two important period fertility curves for year ¢, i.e. f”(a) and
h!(a), whose general relationship is given in equation (2.4). Now, we will look at the relationships

between the positions and shapes of the two period curves.

Let F’(a)=f" (a)/TFRt , H(a)=h' (a)/G, , then we have (i) F"(a)=0, iFtp (a)=1, and (ii)

a=15
49
H/!(a)=0, ZH,” (a) =1. Hence, equation (2.4) can be rewritten as
a=15
Ef(a)= LFR G H! LFR 6.1
F(a)= [(a)-LFR,_., = TFR. . (a)-LFR;_, (6.1)

t t

where T'=t¢—1. Suppose that LFR, can be expressed by the following nth-degree polynomial of y:

LFRy=/10+ﬂ1-y+22-y2+---+/1n-y”=Zn:(/%-yi) ©.2)

i=0
where n is a non-negative integer and A, (i=0,1,2,...,n), are the polynomial coefficients. Then

equation (6.1) becomes
”(a)— -~ HY (@) Zﬂ (T -a)] (6.3)

Applying the binomial theorem on (7 —a)', we have
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F,p(a)—— H/(a)- Z{l Z[( 1y (—'(l : ])'j T""Uaf}}
- Gt \ 1)/ - i 7=/ TLHP 6.4
=7rr 2A 3 [ﬂj (o’ H (@)] (6.4)

i=0 j=0

Define the 7" absolute moment (about zero or origin) of F,”(a) and H/(a) as follows:

49

MF<F,”>:Z[a’ F’(a)], r=0,1,2,... (6.5)
M,<Hf’>=§:[a’ H’(a)], r=0,1,2,... (6.6)

Then, from equation (6.4), we have

n 49

M (F?) = T](T;}{t ’Z{ﬂf Yl (ﬁj TN al Y (a)]}}

i=0 j=0| a=15

Gt \ 3l J ! i—j P
:TFR,'Z{/%'Z =D '(j!(zl ])vj T M, (H >H (6.7)

i=0 Jj=0L

(=}

Equation (6.7) provides a general expression for the relationship between the absolute moments of

F?(a) and H/(a).

W i ifi W i 1 i . 1 W ve.
Now, let’s consider one specific case, where LFR, is a linear function of y. In this case, we have

LFR, = A, + 4 - y. Therefore, equation (6.7) simplifies to

MAF )= e {(ﬂom r) Yl H @143 Hﬁ(a)]}

a=15 a=15

= 7| 1{HP) =2 M, (H)] (638)

Specially, the mean age of F”(a) is as follows:

u{F")= Z[a Fp(a)]—

M (H] )= A M (HY )

“TFR H(H] )= 2O H] )+ (] )]
“TFR (H] )+ 2 (T p(HY )= (u(H? ) = v(H )] (6.9)
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Since LFR,=A,+A -y, wehave LFR —LFR =4 (y=t-49,t-48,...,t-16), and therefore,

LFR, = LFR,_,+A{y —(t = 50)] (6.10)

Based on equation (3.3), equation (6.1) can be rewritten as

LFRt—(a+l) P
— | H/(a) (6.11)

F;p (a) :%'Hzp (a)'LFRz—(a+1) = LFR
t=(u(HP )+1)

1

It is obvious from equation (6.11) that F” (,u<H r >) =H’ (,u<H b >) . Further

LFR_,.,—LFR
F?(a)— H? (a) == mCURLIN JTon (6.12)
t t LFR t
e=(u{Hf )+
From equations (6.10) and (6.12), we obtain
M HY)=a Z
Fr(a)-H'(a)==A | —— L — | H'(a)=——2—(u(H"\ - a)- H’ 6.13
@)= H (@) =A| @)= (ul{H)=a)-Hf (@) (6.13)

t—(,u<H,p>+l) t—(ﬂ<H,">+l)

From equation (6.13), we obtain

D la-F(@)]- ) [a-H(a)]= #- Slw(Hr) a-a*) H (a)] (6.14)
a=15 a=15 t—(ﬂ<Htp>+1) a=15
that is

ﬂ<Ff”>—ﬂ<Hf’>=ﬁ' S (ulH?)-a-a)-H @)
t—(u(HP )+1)  a=15

:#‘ IU<HIP>, Z[(a ,H[ﬁ(a)]_ ZaZ .Hlp(a)}

t—(ﬂ<H,">+l) L a=15 a=15
= # I P\\2 _ \ 2 ryp
LR _<ﬂ<H, ) Za H; (a)} (6.14)
_ W)
=~h | T (6.14)

t=(u{H} )+1)

Therefore, when A4 >0, we have ,u<F,”> < ,u<H,”> ,when A <0, we have ,u<F,”> > ,u<H,”> .
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Based on equation (6.10), we can rewrite equation (6.14) as

P P\ _ 21 .V<pr>
S 7SR ) @1

t

Equation (6.15) also shows that ,u<F,” >— ,u<H ’ > is a hyperbolic function of A,. Taking the first

derivative with respect to 4, on both sides of equation (6.15), we obtain

v(H?)-LFR,_,

[,U<F,P>—,U<H,”>]:1l :_[LFRt—SO ) _(49_lu<Htp>)]2 <0 (6.16)

; is

Therefore, ,u<F,” >— ,u<H r > is a decreasing function of A4,. In other words,

)l

an increasing function of | A | Figure 9 graphs the relationship between ,u<F,” >— ,u<H,P > and A,

(assuming LFR, =5, u(H!)=30,and v(H/)=25).

Figure 9. Relationship between ,u<E” > - ,u<H r > and /4

0.9

06

N e

-0.6

-0.10  -0.08 -0.06 -0.04 -0.02 0 0.02 004 006 008 0.10

Value of 21

7. A closer examination of the Ryder’s basic translation equation

In his classic paper on demographic translation, Ryder (1964) developed the following basic
translation equation between period total fertility rate and cohort total fertility rate:

B(O,T + ) =[B(0,1)]-[1 - ()] (7.1)
In normal term, equation (7.1) is equivalent to

TFR,,, = LFR, -[1— ,(T)] (7.2)

T+
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Ryder arrived at the relationship in equation (7.1) based on the assumption that for each age, the time
series of the age-specific fertility rates may be represented by an nth-degree polynomial with respect

to 7, where T denotes the birth cohort (i.e. year of birth).

Following the approach of Ryder (1964), we assume that for each age a (a=15,16,...,49), the time
series { Sy (a) | y=t-50,t-49,...,t— 16} can be represented by the following n"-degree

polynomial of y:

fi(@) = py@)+pia)-y+py(a)- y* +-+ p,(a)- ¥ = D [p(a) ¥'] (7.3)

i=0

where 7 is a non-negative integer and p.(a),i=0,1,2,..., n, are the polynomial coefficients.

Then, from equation (2.2), we obtain the cohort total fertility rate:
49 49 n ' n 49 '
LFR, =) f;(a)= Z{Zm(m -y ]} = ZKZ%(@J - yl} (7:4)
a=15 a=15 i=0 i=0 a=15
It is obvious from equation (7.4) that under the assumption expressed in equation (7.3), the cohort

total fertility rate (i.e. LFR ) is also an nth-degree polynomial with respect to y.

Similarly, from equation (2.5), we obtain the period total fertility rate:

TFR =Y [ (@) = Z(im(a) (t—(a+ 1))"]] = Z(i[p,-(a) (T~ a)f]} (7.5)

a=15 a=15\_i=0 a=15\_i=0

where T =t—1. Using the binomial theorem, we have

TFR, = i{i[i((—l)/’ (’—')J T al pi(a)ﬂ} (7.6)

a=15 | i=0 | j=0 JHi—j

It is obvious from equation (7.6) that under the assumption expressed in equation (7.3), the period

total fertility rate (i.e. 7FR,) is an n"-degree polynomial with respect to .

Under the assumption expressed in equation (7.3), we have the mean age of childbearing of birth

cohort y:

)= Z{a - (%H = la- hy(@)] (7.7)

a=15 a=15
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where 4 (a)= fy”(a)/LFRy. In this case, it is obvious that A (a) is a ratio of two n"-degree
polynomials with respect to y. Therefore, even the first derivative of ,u< f;> is a very complex

function of y.

Now, we look at a very special situation. Let’s assume that LFR is a constant (denoted as LFR),

then equation (7.4) becomes

ZKZ . (a)j } = LFR (7.8)

a=15

49
Taking the n™ derivative on both sides of equation (7.8), we have ”!'Z p,(a)=0. Therefore,

a=15
49 49 49
an(a):o. Similarly, it can be proved that an_l(a):O, s Zpl(a)zo. And finally,
a=15

a=15 a=15

49
Z Po(a)=LFR . In this case, equation (7.7) becomes

a=15

M) =t Z[ f()]—ﬁals{a-Z[pi(a)-yf]}

a=15 i=0

-— {(Z[a-p,(a)]j-yf} (7.9)

Equation (7.9) shows that under the assumptions stated, ,u< fy > is an nth—degree polynomial with
respect to y. It follows that the first derivative of ,u< fy > with respect to y is an (n-l)th polynomial of

y. Therefore, the first derivative of ,u< fy‘> is constant if and only if n=1.

Under the assumptions that (i) for each age a (@ =15,16,...,49), the time series f(a), y = #-50,
1-49, ..., 1-16, can be represented by a linear function of y, and (ii) LFR, is constant with respect to

vy (denoted as LFR ), we have from equations (7.4) and (7.5)

LFR = i p.(a) (7.10)
TFR, = py(@)+ Y [p(a)-(T-a)]= Y py(a)= Y [a- p(a)] (7.11)
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Combining equations (7.10) and (7.11), we obtain
49
TFR,=LFR - [a- p,(a)] (7.12)
a=15
From equation (7.9), we have

u<f;>=ﬁ-[2[a-po(a)]+(2[a-pl<a>]j-y} (7.13)

a=15 a=15
Equation (7.13) shows that, under the assumptions stated above, ,u< fy‘> is a linear function of y.

Taking the first derivative with respect to y on both sides of equation (7.13), we get

\ 1 ‘

ySTFR Z[a-pl(a)] (7.14)

a=15

(£ )]
Equation (7.14) shows that, under the assumptions stated above, [,u< fy">]'y is constant with respect

49
to y and implies that Z[a -p(a)]=LFR-[ ,u< Sy >]y . Consequently, equation (7.12) becomes

TFR, = LFR-(1-[u(f{)],) (7.15)

Equation (7.15) shows that, under the assumptions stated above, TFR, is constant with respect to ¢.
8. Effect of change in the cohort standard deviation on G,

Mathematically, it is very complex to investigate, in a general way, the effect of change in the cohort

standard deviation on G,. Therefore, we have to assume that the standardized cohort fertility
schedule (i.e. /;(a)) follow certain continuous probability distribution. For this purpose, we will use
the following Gamma function for the simulation.

K-(a—ay)* e, when a>a
g(a)={ ’ ’ (8.1)

0, when a<a,

The properties of the above-defined Gamma function are discussed in detail in Annex B.

In order to examine the effect of change (increment/decrement, denoted as AO'< g>) in the cohort

standard deviation on G,, we calculated the corresponding values of G, using the above Gamma

distribution. In this connection, three scenarios were simulated as follows:
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Scenario I: The mean age of fertility ( ,u< g>) is held constant at 26 for all birth cohorts and the
standard deviation of the benchmark cohort (i.e. the start cohort) is set to be 5.

Scenario 2: The mean age of fertility ( ,u< g>) is held constant at 30 for all birth cohorts and the
standard deviation of the benchmark cohort (i.e. the start cohort) is set to be 5.

Scenario 3: The mean age of fertility ( ,u< g>) is held constant at 34 for all birth cohorts and the

standard deviation of the benchmark cohort (i.e. the start cohort) is set to be 5.

The results of the numerical simulations are shown in Figure 10. From the results of the three

scenarios, we notice that (i) if the change in the cohort standard deviation is positive, then G, >1;
(i1) the higher the mean age of fertility, the larger the effect of change in the cohort standard deviation

on G

. 1is. The numerical simulations also show that when 26S,u<g>£34 and

—0.10<A0(g) <0.10, we have 0.99 <G, <1.03. Therefore, based on the numerical simulations, it

is plausible to conclude that the effect of change in the cohort standard deviation on G, is basically

negligible. In terms of the shape of the curves depicted in Figure 10, they are close to parabolas on

the interval [-0.10, 0.10] of A0'< g> . If the following quadratic function
G =1+¢ -A0'< g> +o,- (Ac7< g>)2 ,where ¢, and ¢, are coefficients, is used to fit the curves, then

we have R*>0.992 (i.e. the coefficient of determination) for all the three scenarios.

Figure 10. Effect of change in the cohort standard deviation on G
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Similarly, we simulated the effects of change in the cohort standard deviation on the standard

deviation of H/(a). Figure 11 shows the results for the three scenarios. It is clear that, when
26S,u<g>s34 and —0.103A0<g>£0.10 , the standard deviation of H/(a) is a monotonically

increasing function of A0'< g> when the cohort mean age of fertility (,u< g>) is held constant. In

terms of the shape of the curves depicted in Figure 11, they are close to straight lines on the interval

[-0.10, 0.10] of Ad<g> , with the coefficient of determination R*>0.993 for all the three

scenarios.

Figure 11. Effect of change in the cohort standard deviation
on the standard deviation of H/(a)
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9. Suggestion for further study

In this paper, the relationships between period and cohort fertility are examined in various ways from
a cohort-to-period perspective. Similarly, the relationships could also be examined from a period-to-
cohort perspective. To gain further insights into the relationships, more numerical simulations and

empirical analyses could be conducted.
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Annex A. Some properties of the (statistical) moments

In this annex, we discuss some properties of the (statistical) moments that are relevant to the present

paper. Suppose that function p(x) represents a probability distribution (i.e. p(x) satisfies

p(x)=0 and Z p(x)=1), then its moments are defined as follows:

all x

The " absolute moment (about zero or origin) of p(x) is defined as

M, (p)=>[x"- p(x)] (A1)

all x

where r is a non-negative integer. It is obvious that M0<p>=1 and M1<p>=,u<p>, where

=Y [x: p(x)] is the mean of p(x).

all x

The #" central moment (about mean) of p(x) is defined as

M, (p)= [(x—u{p) - p(x)] (A2)

all x

where r is a non-negative integer. It is obvious that M0<p> =1, Z\Z<p> =0, and M2<p> = v<p> ,

where v(p)= Z [(x—u(p))* - p(x)] is the variance of p(x).

all x

The absolute and the central moments are important statistical measures for describing the position

and the shape of a probability distribution.
By the binomial theorem, we have

M,(p)= Z{Z _(l.!_(r”!_ 5 !j L .(—M1<p>)i} : p(x)}

all x | i=0 |

L . 7!
=2 | D" l,(r_l),j Pyl p(x)]}

all x

= 1" . j (M< >)i'Mr—i<p>:| (A.3)

pary it(r—i)!

~

Equation (A.3) gives the general relationship between the central and the absolute moments.
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Furthermore, the skewness and the kurtosis of p(x) are defined as:

Skewness: s(p) = ; _[x;<—'i?<>p>J : p(x)} (A.4)

Kurtosis: k{p)= ;{ al ;{lp<>p>j -p(x)] (A.5)
where G< p> = v< p> is the standard deviation of p(x). It is obvious that

M,(p)=(o(p))-s(p) (A.6)

M,(p)=(a(p)* Kp) (A7)

Based on the above definitions, we have

w(p)y=M/p) (A.8)
v(p) =M, (p)=My(p) = (M,(p) (A.9)
a(p) =V (p) =[M,(p) =M {p)~ (M,(p)’ (A.10)
)=t - T W ) ) 2 )
_ ~4<p> _ 1

) @(p)' IM,(p)-M(p)’T

M, (p)—4-M(p)-My(p)+6-(M,(p))*- M,{(p)—3-(M,(p))*] (A.12)

Since

M(p)=[(x=u(p)) - p(x)]

all x

= M,{p)-M,(p)) (A.13)

My(p)=>[(x=u{p)) - p(x)]

all x

=M,(p)— (M (p))’ =3-M(p)-[M,(p) - (M,(p))] (A.14)

M(p)= [(x—u(p)* - p(x)]

all x

=M,(p)~(M(p))* =4 M (p) [M(p) - (M,(p))']
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+6-(M(p))* -[M,{p) - (M,(p)’] (A.15)
we have
D,(p) = M,(p) - (M,(p))’
=M,(p)=v(p) = (@(p) (A.16)

)*-[3- u{p)+0(p)-s(p)] (A.17)
=M(p)+4-M(p)-[M,(p)—(M(p))’1-6-(M(p))* - [M,(p)— (M,(p))’]

=(o(p))' - k(p)+4-1(p)-(o(p)) 13- u(p)+0(p)-s(p)]-6-(u(p))’ - ((p))

=(0(p))*-[6-(u(p))’ +4-u(p)-o(p)-s(p)+(o(p))* - k(p)] (A.18)
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Annex B. Some properties of the Gamma function

The general formula for the Gamma function is given by

2(a) = {K (a—ay)" e, when a 2 a, B.1)

0, when a < a,

where (i) a, is a constant, representing the start point of the curve, (ii)) 4 (4>0) and B (B >0) are

constants, which determine the shape of the curve, and (iii) K (K > 0) is a coefficient, which ensures

that Ig(a)da =1, 1e. K- J[(a —a,)" e ?““da=1. Therefore, K = J[(a P P

dg dg ag

once a,,A and B are known. It is obvious that g(a)=0, —c<a<oco.

The following graph shows two concrete examples of curve g(a): g,(a) (aq,=15, ,u<g1>=29,

O'<g1>=3)a1’1d g (a) (a,=15, ,u<g2>=29, O-<gz>:5)-

Figure B.1. Examples of Gamma distribution
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The following graph shows in three-dimensional form the surface of g(a), using g,(a) as the start
curve and g,(a) as the end curve. The curves between g,(a) and g,(a) are derived based on

linear interpolation vis-a-vis the standard deviations.
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Figure B.2. Three-dimensional presentation of g(a) surface

Cohort Age

The n™ absolute moment (about zero or origin) of g(a) is defined as Mn<g>: J[a" -g(a)lda,

where # 1s a non-negative integer. Let u =a—aq,, then we have u>0, a=u+a,, and da=du.

Hence,

M,,<g> = ]2[(1” ,g(a)]da = K.w[(u_i_ao)n u 'e_B‘u]du

T~ n! n—i i A _-Bu
K- u"ay |fu” e du
! [;(ﬂ-m—i)! j }

1 ! r: .
K- {a(’)- n J.(uAJ'("_’) ~e_B'”)du} (B.2)
0

(-0
Mn—0!

i=

Let U, , :J.(u‘”(”_") -e""")du , then it is obvious that K U, =K-I(uA e "du=1 or U,=1/K.
0 0

Further, we have

1 F seonir s - 1 o med® s y
U —_ . Z/l+(n l)deBu —_ . UA+(n 1)'eBu _ eBud uA+(" i)
B! ()B{< >0£ (")
= —% . l:lim WPy —[A+ (n—1)]- J.(uA+((”_i)_1) e B )du:l
0
= —%. [ lim (™" e )[4+ (n—1)]- U(,,_,.)_l] (B.3)
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By Taylor series expansion, we have

2 3 i
eB‘”:1+B Ll+(B u) +(B u) +...+M+...
1! 2! 3! i!

(B.4)

(B-u)"

Taking a positive integer m, such that m > A+ n, then we have e”* > :
m!

or equivalently

! !
;‘ < :(mj(Lj Since 0<i<n, it followsthat A< A+ (n—1i)< A+ n. Therefore,
e’ (B-uw)" \B")\u"

) A+(n—i) | 1 | 1
A+(n—=i)  -Bu _ u ﬂ . ﬂ N
0 <u € - eB-u < (Bm j (um—(A-%—(n—i)) j < (Bm j (um—(A+n)j (BS)

!
Since lim H mj(;ﬂzo , it follows from the squeeze theorem of limit that

U—o0 Bm um—(A+n)

lim (u™"™.e?*)=0, i=0,1,2,..., n. Therefore, equation (B.3) becomes

u—oo

U = A+ (n—i)

n—i B .U(n—i)—l , 1=0,12,...,n-1 (B.6)

By mathematical induction, it can be proved that K-U, _. ={H(A+ j)} / B, i=0,2,...,n—1
j=1

(or equivalently, K'Urzl:H(A+j):l/ " r=12,...,n). Therefore, equation (B.2) can be
j=1

rewritten as
n n'

M,(g)= {aa g (K-U,,_,-)} (B.7)

i=0

Specially, we have

- < R
M1<g>=Z{ao - ﬂ_(l_i)!wK-Ul_J}% (K-Up)+K U,

:a0+— (BS)

=a, (K-U)+2-a, (K-U)+K-U,
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(A+1) (4+2)

=a.+2-a, 5 (B.9)
M3<g>:i[a;; L)
i=0 @3-l l
=a, (K-U)+3-a; - (K-U)+3-a,-(K-U,)+K -U,
=a,+3-a,-(K-U)+3-a,-(K-U,)+K-U, (B.10)
;{aé l|(4—z)l 'U‘H)}
=ay (K-U)+4-a,-(K-U)+6-a, - (K-U)+4-a,-(K-U)+K-U,
=ay+4-a, (K-U)+6-a, - (K-U)+4-a,-(K-U)+K U, (B.11)
Therefore, we have
(1) Mean of g(a)
=]:[a'g(a)]da:]\;ll<g>:ao+% (B.12)
(i1) Variance of g(a)
j[(a g))’ - g(@)lda = M,(g) - (M (g))’
:(A+1).§A+2)_(A+lj :Atl (B.13)
B B B
(ii1) Standard deviation of g(a)
= g = “/j;l (B.14)

(iv) Skewness of g(a)
_fl(a-sle))
s(g)= | o | E@ e
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_ M, (g)=3- M (g)- M,(g)+2-(M,(g))']

(o(g))’
_ 1 (A+1)-(A+2)-(A+3)_3‘(A+1)2-(A+2)+2‘(ﬂj3
(o(g))’ B B B
_ 1 3.2.(/14;1}2'(«/“1] (B.15)
(o(g) B A+1
(note that 0'<g>'B=\/A+1,therefore (0'<g>~B)3=(A+1)%)
(v) Kurtosis of g(a)
k<g>:T (“-#@T. 2(a) |da
2L ole)
1 N R N R N R
= M (g)-4-M(g) M, 6-(M,(g)* M,(g)-3-(M/{g)*
ey ! () (g) Mi(g)+6 (M (g))* M,(g)=3-(M(g))']
_ 1 {(A+1)~(A+2)'(A+3)'(A+4)_4'(A+1)2~(A+2)~(A+3)
(o(g))* B* B*
+6'(A+1)3~4(A+2)_3(A+1j}
B B
__ 1 (A+D) 5 _3.[A+3
NTER ( o j 3.(4+3)=3 (A+1j (B.16)
(note that o(g)-B=+A+1, therefore (o(g)-B)" =(4+1)*)
From equation (B.12), we have A; ! = ,u< g> —a, . Therefore, from equation (B.13). we have
_(A+1 _,U<g>—a0
B—( B j/v<g>— e (B.17)
It then follows that
A:B(y(g}—ao)—l:(”@—_ao)—l (B.18)
w(g)

The first derivative of g(a) with respect to a is as follows:
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[g(@)], =K (a=a,)"" e - [A=B-(a~a))] (B.19)

By setting [g(a)], =0, we obtain a=aq, +§ (ignore a=a,). This tells us that the curve y(a)

o . 4 . .
attains its maximum at a,_ =a, +E. Since ,u< g> —a_. =1/B>0, we have ,u< g> >a_ . This

max

implies that curve g(a) is always positively skewed (i.e. with the longer tail always on the right-

hand side of the curve).

In terms of data fitting using the gamma function, the following method can be used. Taking the
natural logarithm on both sides of equation (B.1), we obtain

In[g(a)]=In(K)+ 4-In(a—a,)—B-(a—a,) (B.20)
where a>a,. Let y=In[g(a)], 6,=In(K), =4, 6,=-B, x,=Iln(a—aqa,) and x,=a-aq,,
then equation (B.16) becomes:

y=6,+6-x+6, x, (B.21)
By applying bivariate linear regression to equation (B.18), we can obtain the estimates for

coefficients 6,, 6 and 6, (denoted as éo, 631 and éz, respectively). Then we have K =eé°,

Azél,and Bz—éz.
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