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Abstract

Although population-based surveys are now considered the ”gold standard” for

estimating HIV prevalence, they are usually plagued by problems of nonignorable non-

response. This paper uses the partial identification approach to assess the uncertainty

caused by missing HIV status due to unit and item nonresponse. We show how to ex-

ploit the availability of panel data and the absorbing nature of HIV infection to narrow

the worst-case bounds without imposing assumptions on the missing-data mechanism.

Applied to longitudinal data from rural Malawi, our approach results in a substantial

reduction of the width of the worst-case bounds. We also use plausible instrumental

variable and monotone instrumental variable restrictions to further narrow the bounds.
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1 Introduction

The prevalence of HIV in a population is defined as the proportion of people who are

infected or, equivalently, the probability that a randomly drawn individual has the disease.

Having reliable estimates of the HIV prevalence is essential for policy makers in order to

plan control programs and interventions. Since the mid-1980s, the mainstay for monitoring

the HIV epidemic has been facility-based sentinel surveillance data. Based on these data,

HIV prevalence has been found to be higher among women, sexually active people, and in

urban areas. In many cases, estimates have been derived from pregnant women attending

antenatal clinics (ANC) (Brookmeyer, 2010). ANC data have several sources of bias. First,

they are only representative of pregnant women who are sexually active, and exclude men.

Second, they may provide biased estimates even for the sub-population of pregnant women

because of the selective location of the clinics, mostly concentrated in urban areas. As

a result, ANC-based estimates of HIV prevalence may be substantively biased upward

(UNAIDS, 2003; Gouws et al., 2008; Montana et al., 2008; Reniers and Eaton, 2009).

In recent years, many large-scale national surveys began to include biomarker modules

to collect information on HIV serostatus. These biometric surveys are an important new

source of data because they accurately measure HIV status and, unlike ANC-based sur-

veys, are not restricted to a selected sub-population. Estimates of HIV prevalence derived

from biometric surveys are, in general, considerably lower than those based on ANC data

(Gouws et al., 2008; Montana et al., 2008). Based on these new results, UNAIDS corrected

downward HIV prevalence estimates in several countries (Brookmeyer, 2010).

Although population-based surveys are now considered the “gold standard” to monitor

the HIV epidemic (Boerma et al., 2003; Garcia-Calleja et al., 2006; Martin-Herz et al.,

2006; Sakarovitch et al., 2007; Gouws et al., 2008; Mishra et al., 2008a), these data may

be affected by a different but not necessarily less severe source of bias, due to missing data

on the respondents’ HIV status. There are two main causes of missing data: refusal to

take the HIV test and temporary absence or migration of the respondent. Approaches
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that discard cases with missing HIV status (complete-case analysis) implicitly rely on the

assumption that data are missing completely at random (MCAR) (Rubin, 1976). Because

MCAR implies that the distribution of observable characteristics should be the same for

cases with and without missing data, this assumption is easily testable and is often rejected

by the data. For example, Janssens et al. (2008) report that refusal to take the HIV test is

higher for men and for richer people. Failure of the MCAR assumption is likely to produce

biased estimates of HIV prevalence.

To relax the MCAR assumption, imputation and weighting techniques are frequently

used (Mishra et al., 2008b; McNaghten et al., 2007; Mishra et al., 2008a). These meth-

ods, based on the weaker assumption that data are missing at random (MAR) (Little and

Rubin, 1987; Rubin, 1989), produce unbiased estimates only if the missing data mecha-

nism does not depend on unobservables. In fact, many important sources of differences

between individuals (such as knowledge or perceptions about one’s HIV status), are un-

observable, so HIV prevalence estimates based on the MAR assumption may be severely

biased. For example, there is evidence that people refusing to be tested have higher risk of

being infected (Reniers and Eaton, 2009; Janssens et al., 2008). It has also been found that

those who are not interviewed because of migration have higher risk of being HIV infected

(Marston et al., 2008; Crampin et al., 2003; Lurie et al., 2003; Obare, 2010). Anglewicz

(2007) analyzes this phenomenon using data from a follow-up specifically designed to inter-

view respondents who did not participate in one wave of a panel survey for Malawi because

of absence. He finds that migrants are likely to report a higher number of sexual partners

and to be HIV positive. An explanation is that HIV infected people are more likely to

migrate as a consequence of union dissolution due to death of the partner or divorce.

Unlike MCAR, the MAR assumption is essentially untestable and several approaches

have been proposed to avoid it (see Vella, 1998, for a survey). These approaches have

recently been used to estimate HIV prevalence (Bignami-Van Assche et al., 2005; Lachaud,

2007; Janssens et al., 2008; Reniers and Eaton, 2009; Barnighausen et al., 2011). For

example, Barnighausen et al. (2011) use data from the Zambia Demographic and Health
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Survey (DHS), where 28% of men refused to be tested, and find that the estimate of male

HIV prevalence is only 12% when based on imputed data but it goes up to 21% when

using a Heckman-type selection model (Heckman, 1979). Their result suggests that bias in

prevalence estimates can be very severe when missingness depends on unobserved variables.

One problem with these alternative approaches, however, is that they tend to impose strong

restrictions on the distribution of the unobservables.

The aim of our paper is to study what can be learned about HIV prevalence when

data are subject to nonignorable missing data mechanisms. To avoid strong untestable

assumptions, we follow Horowitz and Manski (1998) and Manski (1995, 2003) and switch

the focus away from point identification, which typically relies on a combination of strong

requirement about the data and strong assumptions about the model, to partial identifi-

cation. We first use the empirical evidence alone to identify a region of credible values for

HIV prevalence. We then exploit the availability of panel data and the absorbing nature of

HIV infection to narrow the width of this region. Although additional assumptions, such

as instrumental variable (IV) and monotone instrumental variable (MIV) restrictions, may

be used to further narrow the width of the identification region, our main contribution is

to show the power of combining substantive information about the HIV process with the

longitudinal nature of the data.

We use data from the Malawi Diffusion and Ideational Change Project (MDICP), a

longitudinal survey conducted every two years in rural Malawi since 1998. Starting from

2004, a biometric survey has been added to the main survey allowing the estimation of

HIV prevalence. Malawi is one of the countries most affected by the HIV epidemic. Out

of a population of 15 million people, 80% of them living in rural areas, almost one million

people are living with HIV (UNGASS, 2010) and AIDS is the leading cause of death

among adults (CIA, 2009). The national HIV prevalence rate, based on the 2004 Malawi

Demographic and Health Survey (MDHS), is equal to 11.8% for people aged 15–49. Like for

most countries in sub-Saharan Africa, where HIV is mainly transmitted via heterosexual

contact, HIV prevalence is estimated to be higher for women than for men (13.3% against
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10.2%), and to be higher in urban than in rural areas (17.1% versus 10.8%). Although the

MDICP may only be considered representative of the population of rural Malawi, it has

the advantage over the MDHS of being a longitudinal survey. Further, unlike the MDHS

for which a biomarker module is currently available only for 2004, biometric data from the

MDICP are available for 2004, 2006 and 2008.

The remainder of this paper is organized as follows. Section 2 describes the data and the

problem of missing information on HIV status. Section 3 reviews the partial identification

approach and shows how to exploit the longitudinal nature of the data and the absorbing

nature of HIV infection to narrow the worst-case bounds. It also discusses how to use

plausible IV and MIV restrictions to further narrow the bounds. Section 4 presents the

estimated HIV prevalence bounds for the whole population and, separately, by region,

gender and cohort. Finally, Section 5 offers some conclusions.

2 Data

Our data come from the Malawi Diffusion and Ideational Change Project (MDICP), a

longitudinal survey conducted in rural Malawi.1 This data set is particularly interesting

for our purposes because it is longitudinal and includes HIV tests for the years 2004, 2006

and 2008.

2.1 MDICP survey design

The MDICP survey has been carried out in three of the 28 Malawian districts, one for each

of the three administrative regions of the country: Balaka in the South, Mchinji in the

Center and Rumphi in the North. The three regions are significantly different in terms of

ethnic composition, language, religious practice, population density, literacy, and prevailing

social system (e.g. patrilocal or matrilocal residence).

The first wave of the survey was carried out in 1998, interviewing 1,541 ever-married

women of childbearing age and 1,198 men, most of them husbands of the married women

1 The data can be freely downloaded from the following website: http://www.malawi.pop.upenn.edu.
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in the sample. The second wave, carried out in 2001, followed-up the respondents and

interviewed the new spouses of respondents who got married between the first and the

second wave (Watkins et al., 2003). The third wave, carried out in 2004, augmented the

original sample with a random sample of about 1,500 people aged 15–28 (both married and

never-married), to correct for aging of the baseline sample and the fact that the original

sample was restricted to ever-married women and their husband. With this addition, the

survey may be regarded as broadly representative of the population of rural Malawi.
2
The

fourth (2006) and fifth (2008) waves added the spouses of newly married people.

The survey instrument asks about sexual relations, risk assessments, marriage and

partnership histories, household rosters and transfers, as well as income and other measures

of wealth. It also includes information on village-level variables, regional market prices,

and weather conditions. The survey instrument was translated from English in the three

most common local languages (Yao, Chichewa, and Tumbuka). Interviews were carried

out face-to-face by interviewers who spoke the same language as the interviewees and were

hired and trained locally.

Starting from 2004, a biometric survey, called the voluntary consulting and test (VCT)

survey, has been added to the main survey. The VCT survey consists of a short ques-

tionnaire, submitted a few days after the main survey and focused on sexual behavior and

AIDS related questions, and free tests for HIV and other sexually transmitted infections

administered by nurses from outside the area. Respondents to the VCT survey are also

offered pre-test counseling about HIV prevention strategies. In 2004, oral swabs were used

for the HIV test and results were given to respondents 2–4 months after testing.
3
In 2006

and 2008, the MDICP team tested only for HIV using an improved testing procedure (rapid

response blood test) that eliminated the time delay between testing and test results, so all

individuals received their results immediately. Measurement error in the two types of tests

2
See http://www.malawi.pop.upenn.edu/Level%203/Malawi/docs/Sampling3.pdf for further details

about the 2004 sampling strategy.
3
Thornton (2008) run an experiment that consists in giving vouchers with a small monetary rewards

to the respondents to encourage them to obtain their test results at nearby VCT centers. She shows that

missingness of HIV status is independent of the receipt of HIV test results by the respondents.
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(oral swabs and blood test) is very limited and, being due only to the accuracy limit of the

measuring instruments, can be considered as random.

Although the survey was not designed to be representative of the population in rural

Malawi, the characteristics of the 2004 sample closely match those of the 2004 MDHS

for rural Malawi (Thornton, 2008). We focus on people interviewed in 2004, excluding

new entrants in 2006 and 2008, and dropping from the sample people who were never

successfully contacted. Because prevalence is defined on the population of alive people, our

working sample consists of 4,062 persons who were alive in 2004. When computing HIV

prevalence for 2006 and 2008, we also exclude people who died after 2004.

2.2 Missing HIV status

In each of the three waves considered, HIV status is missing for a substantial fraction of

the sample. Missing HIV status may arise from either unit or item nonresponse. We define

as unit nonresponse the case in which both the main and the VCT survey are missing

because of failure to establish a contact or refusal to cooperate. Item nonresponse occurs

when HIV status is not available for responding units.

There are different patterns of unit nonresponse across our three waves. About 55% of

the sample are unit respondents in all three waves, about 12% are unit respondents in 2004

and unit nonrespondents in 2006 and 2008, about 11% are unit respondents in 2004 and

2006 and unit nonrespondents in 2008, about 8% are unit respondents in 2004 and 2008

and unit nonrespondents in 2006, while the remaining 14% include the other patterns of

unit nonresponse.

Table 1 shows the various sources of missing data. Overall, the fraction with missing

HIV status is 29% in 2004 and rises to 42% in 2008 due to the increase in item nonresponse

from 14% to 18% and to a larger increase in unit nonresponse from 15% to 24%. The main

reason for unit nonresponse, and for its increase across waves, is migration. Hospitalization

and refusal to participate are relatively unimportant. Other reasons for unit nonresponse

are lumped into the residual category ‘other’, consisting mainly of people who did not fill
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the questionnaire because too old or too sick, or for unknown reasons. The main reason for

item nonresponse is refusal to get tested although, in 2004, the refusal rate in the MDICP

(6.3%) is lower than for the MDHS in rural areas (21.7%). (Thornton, 2008) argues that

this may be due to the method of testing (oral swabs) and the fact that the MDICP does

not require respondents to learn their results at the time of testing. However, low refusal

rates in the MDCIP are also found in 2006 and 2008. In very few cases the results of

the HIV test are indeterminate or have been lost. Other reasons for item nonresponse are

lumped into the category ‘other’, consisting of people who completed the main survey but

not the VCT survey, for example because they were temporarily absent. The importance

of this residual category almost doubled between 2004 and 2008.

The classification of the different sources of missing data is important. In fact, it has

been shown that people who refuse to be tested have higher risk of being infected (Janssens

et al., 2008; Reniers and Eaton, 2009), while people who are lost because of migration have

higher HIV prevalence than those who participate (Crampin et al., 2003; Lurie et al., 2003;

Marston et al., 2008; Obare, 2010). Thus, ignoring missing data due to refusal to be tested

or migration may bias the HIV prevalence estimate downward. On the other hand, missing

data due to loss of test results are not a major source of concern and may be considered

as purely random.

3 Partial identification of HIV prevalence

To formalize our problem, consider a population that, at a given time t, consists of Nt living

individuals who can be either susceptible to HIV4 or infected. HIV status of individual

i at time t is represented by the binary indicator yit, which is equal to one if individual

i is HIV positive and to zero otherwise. HIV prevalence at time t is just the proportion

πt = N−1
t

�Nt
i=1 yit of HIV infected people, which in turn is equal to Pr(Yt = 1), where Yt

is a binary random variable equal to one if a randomly selected individual is HIV positive

4 A susceptible individual is a member of the population who, at a given point in time, is at risk of
becoming infected by the disease.
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at time t and to zero otherwise.

Our aim is to construct informative bounds for πt when HIV status is missing for a

fraction of individuals in the population. As argued in the previous section, in our data

measurement error is negligible and may be considered as purely random. Thus, unlike

Kreider and Pepper (2007) and Nicoletti et al. (2011), we ignore this problem and focus

on the uncertainty about πt caused by missing data.

3.1 Bounds with cross-sectional data

We first consider the problem of bounding HIV prevalence when data are only available at

a given point in time, as in a single cross-section or when the longitudinal dimension of a

panel survey is ignored.

By the law of total probability, we can write HIV prevalence at time t as

πt = Pr(Yt = 1|Dt = 1)Pr(Dt = 1) + Pr(Yt = 1|Dt = 0)Pr(Dt = 0), (1)

where Dt is a binary indicator equal to one if HIV status is known and to zero otherwise.

As pointed out by Manski (1989), the missing data problem arises because the data tell

us nothing about Pr(Yt = 1|Dt = 0). However, because 0 ≤ Pr(Yt = 1|Dt = 0) ≤ 1,

substituting the lower and upper bounds for Pr(Yt = 1|Dt = 0) into (1) gives the following

lower and upper bounds on πt

LBt = Pr(Yt = 1|Dt = 1)Pr(Dt = 1) = Pr(Yt = 1, Dt = 1),

UBt = Pr(Yt = 1|Dt = 1)Pr(Dt = 1) + Pr(Dt = 0),

= Pr(Yt = 1, Dt = 1) + Pr(Dt = 0).

These bounds are often referred to as worst-case bounds. If only a cross-section is available,

these bounds are sharp because they use all the available information.

The identification region for πt consists of all the points in the interval between LBt and

UBt. The width Wt = UBt − LBt of this region is equal to the nonresponse probability

Pr(Dt = 0), which therefore represents a direct measure of the uncertainty about HIV

prevalence caused by nonresponse (Horowitz and Manski, 1998). Without nonresponse,
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there is no uncertainty about πt. When nonresponse is frequent, the uncertainty is large.

In this case, an important issue is whether there exist credible restrictions on the HIV

process that may be used to narrow the worst-case bounds.

3.2 Bounds with panel data

HIV infection is an absorbing state (Gallo, 1993): a person infected at any given time

has zero probability of becoming susceptible at later times, while a person susceptible at

any given time had probability one of being susceptible at earlier times. These simple

considerations help narrow the worst-case bounds when panel data are available and HIV

status of people who are nonrespondent in one wave may be observed in other waves.

We will refer to the resulting bounds as ‘dynamic’, because they use restrictions on the

dynamics of the HIV epidemic. To keep things simple, we only present results for the case

of short panels with two or three waves. Appendix A presents the results for the general

case of a panel with P ≥ 1 waves before wave t, or F ≥ 1 waves after wave t, or both.

Suppose first that we use only two waves of a panel, at times t and t + 1. To narrow

the worst-case bounds on πt, consider again equation (1) and notice that

Pr(Yt = 1|Dt = 0) = Pr(Yt = 1|Dt+1 = 0, Dt = 0)Pr(Dt+1 = 0|Dt = 0)+

+ Pr(Yt = 1|Dt+1 = 1, Dt = 0)Pr(Dt+1 = 1|Dt = 0),

where

Pr(Yt = 1|Dt+1 = 1, Dt = 0) =

= Pr(Yt = 1|Yt+1 = 1, Dt+1 = 1, Dt = 0)Pr(Yt+1 = 1|Dt+1 = 1, Dt = 0),

since Pr(Yt = 1|Yt+1 = 0, Dt+1 = 1, Dt = 0) = 0 due to the absorbing nature of HIV status.

Thus, we can rewrite (1) as

Pr(Yt = 1) = Pr(Yt = 1, Dt = 1)+

+ Pr(Yt = 1|Dt+1 = 0, Dt = 0)Pr(Dt+1 = 0, Dt = 0)+

+ Pr(Yt = 1|Yt+1 = 1, Dt+1 = 1, Dt = 0)×

× Pr(Yt+1 = 1|Dt+1 = 1, Dt = 0)Pr(Dt+1 = 1, Dt = 0).

(2)
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From (2) we obtain lower and upper bounds on πt by assuming that the unknown prob-

abilities Pr(Yt = 1|Dt+1 = 0, Dt = 0) and Pr(Yt = 1|Yt+1 = 1, Dt+1 = 1, Dt = 0) are

respectively equal to their lower bound of zero and their upper bound of one. Setting both

probabilities equal to zero gives the lower bound

LB(+1)
t = LBt,

while setting both of them equal to one gives the upper bound

UB(+1)
t = Pr(Yt = 1, Dt = 1) + Pr(Dt+1 = 0, Dt = 0)+

+ Pr(Yt+1 = 1|Dt+1 = 1, Dt = 0)Pr(Dt+1 = 1, Dt = 0)

= Pr(Yt = 1, Dt = 1) + Pr(Dt = 0)×

× [Pr(Yt+1 = 1, Dt+1 = 1|Dt = 0) + Pr(Dt+1 = 1|Dt = 0)]

= UBt − Pr(Dt = 0) [1− Pr(Yt+1 = 1, Dt+1 = 1|Dt = 0)− Pr(Dt+1 = 1|Dt = 0)] ,

where the term in square brackets in the last relationship is equal to the conditional prob-

ability that Yt+1 = 0 and Dt+1 = 1 given Dt = 0, and is therefore bounded between zero

and one. Unlike the worst-case bounds, these new bounds are sharp, as they use all the

available information. The width of the resulting identification region for πt is

W (+1)
t = UB(+1)

t − LB(+1)
t = Wt − Pr(Yt+1 = 0, Dt+1 = 1, Dt = 0).

Because Pr(Yt+1 = 0, Dt+1 = 1, Dt = 0) is bounded between zero and one, and cannot

exceed Pr(Dt = 0), we have that 0 ≤ W (+1)
t ≤ Wt.

Notice that simply knowing the HIV status at t+ 1 of people with missing HIV status

at t is not enough to narrow the worst-case bounds. In fact, among the respondents at

t+ 1, only the information about negative HIV status can be used to infer HIV status at

t, so only the upper bound can be reduced relative to the worst-case. Respondents at t+1

who are found to be HIV positive cannot be assumed to have been already HIV positive

at t, so the lower bound is the same as in the worst-case.
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If the two waves of the panel are at times t−1 and t, then we can rewrite the unknown

probability in (1) by exploiting past rather than future information. This gives

Pr(Yt = 1|Dt = 0) = Pr(Yt = 1|Dt = 0, Dt−1 = 0)Pr(Dt−1 = 0|Dt = 0)+

+ Pr(Yt = 1|Dt = 0, Dt−1 = 1)Pr(Dt−1 = 1|Dt = 0),

where

Pr(Yt = 1|Dt = 0, Dt−1 = 1) =

= Pr(Yt = 1|Dt = 0, Dt−1 = 1, Yt−1 = 0)Pr(Yt−1 = 0|Dt = 0, Dt−1 = 1)+

+ Pr(Yt−1 = 1|Dt = 0, Dt−1 = 1),

since Pr(Yt = 1|Dt = 0, Dt−1 = 1, Yt−1 = 1) = 1 due to the absorbing nature of HIV status.

Proceeding as before, we obtain the following bounds

LB(−1)
t = LBt + Pr(Yt−1 = 1, Dt−1 = 1, Dt = 0),

UB(−1)
t = UBt,

Notice that, unlike the case when future information is used, here the upper bound is the

same as in the worst-case, while the lower bound is greater. This is because past negative

HIV status is uninformative, as we cannot assume that a person who was HIV negative in

the past remains HIV negative in the future, while past positive HIV status is informative,

as a person who was HIV positive in the past remains HIV positive in the future. The

width of the resulting identification region for πt is

W (−1)
t = UB(−1)

t − LB(−1)
t = Wt − Pr(Yt−1 = 1, Dt−1 = 1, Dt = 0).

Again, 0 ≤ W (−1)
t ≤ Wt.

Using three waves of a panel, we can further narrow the identification region for πt.

Suppose that, in addition to wave t, we use one wave before t and one after t. Then it

follows immediately from our previous results that

LB(−1,+1)
t = LB(−1)

t ,

UP (−1,+1)
t = UB(+1)

t ,

W (−1,+1)
t = Wt − Pr(Yt+1 = 0, Dt+1 = 1, Dt = 0)− Pr(Yt−1 = 1, Dt−1 = 1, Dt = 0).
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Using wave t and two waves after t we instead have

LB(+2)
t = LB(+1)

t ,

UB(+2)
t = UB(+1)

t − Pr(Yt+2 = 0, Dt+2 = 1, Dt+1 = Dt = 0),

W (+2)
t = W (+1)

t − Pr(Yt+2 = 0, Dt+2 = 1, Dt+1 = Dt = 0),

while using wave t and two waves before t we have

LB(−2)
t = LB(−1)

t + Pr(Yt−2 = 1, Dt−2 = 1, Dt−1 = Dt = 0),

UB(−2)
t = UB(−1)

t ,

W (−2)
t = W (−1)

t − Pr(Yt−2 = 1, Dt−2 = 1, Dt−1 = Dt = 0).

In the last two cases, the uncertainty about πt due to missing data decreases because of

either an increase in the lower bound or a decrease in the upper bound, in the first case

because of a combination of the two effects. Increasing the number of available waves

further decreases the uncertainty due to missing data.

3.3 IV and MIV restrictions

To further narrow the identification region for πt, the restrictions discussed in Section 3.2

may be combined with those implied by additional assumptions on the HIV process.

One possibility are instrumental variable (IV) restrictions (Manski, 1994, 2003). A ran-

dom variable is an IV if it helps predict nonresponse but does not help predict HIV status,

possibly after conditioning on a set of observable covariates. Although it is generally diffi-

cult to find valid instrumental variables, a convincing case can be made for data collection

characteristics (characteristics of the interviewer, interview mode, length and design of

the questionnaire, etc.), because they help predict nonresponse (Groves and Couper, 1998;

Lepkowski and Couper, 2002; Nicoletti and Peracchi, 2006), but lack predictive power for

HIV status.

Since IV restrictions are often controversial, another possibility is to impose weaker

monotone instrumental variable (MIV) restrictions (Manski and Pepper, 2000). A random

variable is a MIV if it shifts HIV prevalence monotonically, possibly after conditioning on

a set of observable covariates.
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4 Results

We illustrate by presenting complete-case estimates, worst-case bounds and dynamic bounds

for HIV prevalence in rural Malawi constructed from the MDICP data for 2004, 2006 and

2008. Since it is of interest for both research and policy-making to know how the HIV epi-

demic is spread among different demographic groups, we present estimates for the whole

population and for subgroups defined by gender and birth cohort. We distinguish between

four cohorts: i) Cohort A: born 1984–1989 (aged 15–20 in 2004), ii) Cohort B: born 1975–

1983 (aged 21–29 in 2004), iii) Cohort C: born 1965–1974 (aged 30–39 in 2004), and iv)

Cohort D: born before 1965 (aged 40+ in 2004). We present our results mostly in graphical

form. Detailed numerical tabulations for the entire sample and separately by gender and

birth cohort are contained in Appendix B.

4.1 Complete-case estimates

The complete-case estimates of HIV prevalence in rural Malawi are 6.2% for 2004, 4.9% for

2006, and 5.1% for 2008 (see Table B.1 in Appendix B). These estimates are substantially

lower than the 2004 MDHS estimate of 10.8% for rural Malawi, possibly because the

MDICP sample does not include peri-urban areas (Obare et al., 2009), and show no clear

trend.

For the youngest cohort (born 1984–1989), estimated HIV prevalence is very low in

all three waves. Among males it is always highest for the cohort born before 1965 while,

among females, it is highest for the 1975–83 cohort in 2004 and the 1965–74 cohort in 2006

and 2008. However, since the fraction of the sample with missing HIV status is very high

in each year, uncertainty about the complete-case estimates is also high.

4.2 Worst-case and dynamic bounds

The bounds introduced in Section 3 are easily estimated nonparametrically by their sample

counterparts. Since they are estimated, their sampling variability must be taken into

account. We do this by constructing 95%-level bootstrap confidence intervals based on
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the percentile method with 999 bootstrap replications. The interval between the upper

limit of the 95%-level confidence interval for the upper bound and the lower limit of the

95%-level confidence interval for the lower bound is a 95%-level confidence interval for the

identification region.

The top-left plot in Figure 1 displays graphically the worst-case and the dynamic bounds

on HIV prevalence in rural Malawi, along with the complete-case estimates. Using the

worst-case bounds, the identification region is the interval between 3.8% and 34.2% in

2004, the interval between 2.6% and 40.2% in 2006, and the interval between 2.4% and

46.6% in 2008. Notice that the width of these intervals increases over time following the

pattern of missing data. Also notice that the complete-case estimates are always very close

to the lower bound of the identification region.

Using the dynamic bounds, the identification region is the interval between 3.8% and

15.9% in 2004, between 4.5% and 28.9% in 2006, and between 4.9% and 46.6% in 2008.

Thus, for the first two waves, we have a sizable reductions of the uncertainty about HIV

prevalence compared to the worst-case bounds (amounting to a reduction of their width by

about 18.2 percentage points in 2004 and 13.2 percentage points in 2006). For the last wave,

the reduction of the bound width is instead negligible (only 2.4 percentage points). This

pattern reflects the number of waves available before and after the point in time where HIV

prevalence is estimated. In 2004 only future information about HIV status can be used.

As a consequence, the dynamic upper bound is lower than the worst-case upper bound

but the lower bound is unchanged. In 2006, both previous and future information about

HIV status help reduce the uncertainty, resulting in a decrease of the upper bound and an

increase of the lower bound. In 2008, since no subsequent wave of the panel is available,

only previous information about HIV status helps reduce the uncertainty, resulting in an

increase of the lower bound with the upper bound unchanged.

The other three panels in Figure 1 refer to the three regions of Malawi: South, Center

and North. According to the MDHS, Southern Malawi is the region with the highest HIV

prevalence, followed by the Center and the North. Although the dynamic bounds are much
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narrower than the worst-case bounds, they are still too wide to support this conclusions.

Tables B.2 and B.3 in Appendix B show that the dynamic bounds are much narrower

than the worst-case bounds also if we consider subgroups characterized by gender and

birth cohort. Again, this is especially true for 2004 and 2006. Although the width of the

dynamic bounds is generally lower for males, meaning that there is more uncertainty about

HIV prevalence among females, the identification regions remain too wide to allow us to

establish a rank by gender.

4.3 Imposing additional IV and MIV restrictions

Table 2 reports the IVs and MIVs used in our analysis. As IVs, we consider gender differ-

ences between the interviewer and the interviewee, interviewer’s experience, interviewer’s

age categorized in two classes, and the month of the first interview attempt. The latter

is the only IV available in 2008. As MIV, we consider the number of sexual partners a

respondent had till that year. This is a valid MIV if the probability of being HIV infected

does not fall as the number of sexual partners increases. Further, because information on

IVs and MIVs is not available for unit nonrespondents, our analysis is restricted to the

subsample of unit respondents.

Figure 2 shows our dynamic bounds on the population HIV prevalence in the three years

considered, separately for the benchmark case (the case with no IVs or MIVs) and the cases

when we also use either the interview month as an IV or our MIV. The identification region

for HIV prevalence in 2004 is the interval between 4.1% and 13.6% in the benchmark case,

the interval between 4.3% and 12% when using the interview month as an IV, and the

interval between 4.2% and 13% when using our MIV. The identification region for HIV

prevalence in 2006, is the interval between 3.5% and 16.6% in the benchmark case, the

interval between 3.7% and 15.1% when using the interview month as an IV, and the interval

between 3.6% and 16.6% when using our MIV. The identification region for HIV prevalence

in 2008 is the interval between 4.3% and 30.6% in the benchmark case, the interval between

4.7% and 26.5% when using the interview month as an IV, and the interval between 4.4%
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and 30.3% when using our MIV. Thus, using the interview month as an IV reduces the

width of the identification region relative to the benchmark case by 1.7 percentage points

in 2004 and in 2006, and by 4.4 percentage points in 2008. On the other hand, the number

of sexual partners does not appear to be an effective MIV, as it is of little help in narrowing

the identification region.

Figures 3, 4 and 5 show our dynamic bounds by survey year, separately by gender and

birth cohort, along with the complete-case estimates. As IV, we present the results for

the ‘best IV’ available, namely the one that most reduces the width of the identification

region. The best IV varies with gender and cohort. In 2004 the best IVs are either the

interview month or the interviewer’s experience, while in 2006 the best IV is always the

interview month. Unlike the case of the whole sample (Figure 2), the MIV restriction now

seems to be more effective in reducing the width of the identification interval, although its

effectiveness varies with gender and cohort.

5 Conclusions

Having reliable estimates of HIV prevalence is critical for policy. Today, the gold-standard

is estimates based on biomarkers collected in population based surveys. These surveys,

however, are plagued by nonignorable missing data problems, which in turn translate into

substantial uncertainty about HIV prevalence in the population.

Our paper uses a bounding approach to assess what can be learnt from this type of

data. Its main contribution is to show how worst-case bounds, which are often distressingly

wide, can be narrowed when panel data are available by exploiting the absorbing nature

of HIV infection.

Panel data are typically used to estimate HIV incidence rates. However, they can also

be used to estimate HIV prevalence at different points in time for the same population.

We show that the identifying power of panel data comes from the fact that we are able

to observe in other waves the HIV status of current nonrespondents. By itself, this is

not enough to narrow the worst-case bounds. In fact, among the respondents in future
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waves, only the information about negative HIV status can be used to infer HIV status

in the current wave, so only the upper bound can be reduced relative to the worst-case.

Similarly, information on past HIV status is helpful only if some of the nonrespondents in

the current wave are found to be HIV positive in the past. In these cases, the availability of

panel data helps because it decreases the upper bound when future information is exploited

and increases the lower bound when past information is exploited.

Applying our dynamic bounds to longitudinal data from Malawi, we obtain a reduc-

tion of the width of the worst-case bounds by about 18.2 percentage points in 2004, 13.2

percentage points in 2006, and 2.4 percentage points in 2008. Introducing plausible IV and

MIV restrictions helps to further narrow the bounds. Ignoring the missing data problem

and only using the complete cases, would give a point estimate of HIV prevalence that is

very close to our lower bound. This estimate may be too optimistic because, according to

our bounds, HIV prevalence could be much higher.

Our approach is easy to implement, it does not require assumptions about the nature of

the missing data mechanism, and it allows to obtain relatively small and precisely estimated

intervals for HIV prevalence. It could also be used for other applications where panel data

are available and credible restrictions may be placed on the transition probabilities for the

outcome of interest.

Our results confirm the importance of keeping low the nonresponse rates, and to con-

sider unit and item nonresponse separately. They also illustrate the importance of including

in the data information on interviewers’ characteristics, fieldwork procedures etc, as these

variables can be used as IVs or MIVs.
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Table 1: Distribution of types of unit respondents and nonrespondents by wave

2004 2006 2008
Freq Perc Freq Perc Freq Perc

UNIT RESPONDENTS
HIV negative 2700 66.47 2408 59.28 2116 52.09
HIV positive 177 4.36 123 3.03 117 2.88
Item nonresponse
Test refused 256 6.30 200 4.92 172 4.23
Indeterminate 14 0.34 6 0.15 1 0.02
Results lost 24 0.59 0 0.00 0 0.00
Other* 319 7.85 313 7.71 569 14.01
UNIT NONRESPONDENTS
Refused 27 0.66 11 0.27 58 1.43
Moved 184 4.53 479 11.79 470 11.57
Temporarily absent 36 0.89 41 1.01 76 1.87
Hospitalized 6 0.15 5 0.12 1 0.02
Other** 319 7.85 432 10.64 359 8.84
Dead / / 44 1.08 123 3.03

Total 4062 100 4062 100 4062 100

% with HIV
status missing 29.17 36.61 42.00

The new entrants 2006/2008 are excluded.

* The category other item nonrespondents corresponds to people that fulfill

the first part of the questionnaire, but not the second, for example because

they were temporarily absent during the biomarker collection.

** The majority of unit nonrespondents categorized in the class other corresponds

to people who did not fulfill the questionnaire for unknown reasons or

because too old or too sick.
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Table 2: Instrumental variables and monotone instrumental variables for the unit respondents.

2004 2006 2008
Freq Perc Freq Perc Freq Perc

IV
Interviewer’s gender n.a.

Same 1350 48.95 1405 62.84

Different 1408 51.05 831 37.16

Interviewer’s experience n.a.

No 1214 44.02 1087 48.61

Yes 1544 55.98 1149 51.39

Interviewer’s age n.a.

Young 1112 40.32 1111 49.69

Old 1646 59.68 1,125 50.31

Month of the interview

May-June 1804 65.41 1255 56.13 1250 44.25

July-August 954 34.59 981 43.87 1575 55.75

MIV
Number of sexual partners

0-1 1142 41.41 773 34.57 944 33.42

2 671 24.33 595 26.61 659 23.33

3 365 13.23 358 16.01 448 15.86

4+ 580 21.03 510 22.81 774 27.4

Notes: n.a. = not applicable because information was not collected.
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Figure 1: HIV prevalence for the whole sample, by region and wave: Complete-case estimates and

bootstrapped worst-case and dynamic bounds.

25



Figure 2: HIV prevalences for unit respondents by survey year: dynamic bounds in the benchmark

case, dynamic bounds with the best IV restriction, dynamic bounds with MIV restriction, and

complete-case estimates.

26



Figure 3: HIV prevalences for unit respondents by gender and cohort in 2004: dynamic bounds

in the benchmark case, dynamic bounds with best IV restriction, dynamic bounds with MIV re-

striction, and complete-case estimates. Cohort A is the cohort born in 1984–1989, cohort B is the

cohort born in 1975–1983, cohort C is the cohort born in 1965–1974, and cohort D is the cohort

born before 1965.
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Figure 4: HIV prevalences for unit respondents by gender and cohort in 2006: dynamic bounds

in the benchmark case, dynamic bounds with best IV restriction, dynamic bounds with MIV re-

striction, and complete-case estimates. Cohort A is the cohort born in 1984–1989, cohort B is the

cohort born in 1975–1983, cohort C is the cohort born in 1965–1974, and cohort D is the cohort

born before 1965.
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Figure 5: HIV prevalences for unit respondents by gender and cohort in 2008: dynamic bounds

in the benchmark case, dynamic bounds with best IV restriction, dynamic bounds with MIV re-

striction, and complete-case estimates. Cohort A is the cohort born in 1984–1989, cohort B is the

cohort born in 1975–1983, cohort C is the cohort born in 1965–1974, and cohort D is the cohort

born before 1965.
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A General case

Consider bounding HIV prevalence at time t in the general case when several waves of a

panel survey are available, either before or after wave t.

A.1 F waves after t

With information on F waves after wave t, the lower bound on πt does not change while

the upper bound is characterized by the following recursion

t : UBt,

t, t+ 1 : UB(+1)
t = UBt − Pr(Yt+1 = 0, Dt+1 = 1, Dt = 0),

t, t+ 1, t+ 2 : UB(+2)
t = UB(+1)

t − Pr(Yt+2 = 0, Dt+2 = 1, Dt+1 = 0, Dt = 0),

· · ·

t, . . . , t+ F : UB(+F )
t = UB(+(F−1))

t − Pr(Yt+F = 0, Dt+F = 1, Dt+F−1 = 0, . . . , Dt = 0).

Thus we obtain

LB(+F )
t = LBt,

UB(+F )
t = UBt −

F�

f=1

Pr(Yt+f = 0, Dt+f = 1, Dt+f−1 = 0, . . . , Dt+1 = 0, Dt = 0),

and

Wt(+F ) = Wt −
F�

f=1

Pr(Yt+f = 0, Dt+f = 1, Dt+f−1 = 0, . . . , Dt+1 = 0, Dt = 0).

It is easy to see that increasing the number of future waves decreases the width of the

identification region.
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A.2 P waves before t

With information on P waves before wave t, the upper bound does not change while the

lower bound is characterized by the following recursions

t : LBt,

t− 1, t : LB(−1)
t = LBt + Pr(Yt−1 = 1, Dt−1 = 1, Dt = 0),

t− 2, t− 1, t : LB(−2)
t = LB(−1)

t + Pr(Yt−2 = 1, Dt−2 = 1, Dt−1 = 0, Dt = 0),

· · ·

t− P, . . . , t : LB(−P )
t = LB(−(P−1))

t + Pr(Yt−P = 1, Dt−P = 1, Dt−P+1 = 0, . . . , Dt = 0).

Thus we obtain

LB(−P )
t = LBt +

P�

p=1

Pr(Yt−p = 1, Dt−p = 1, Dt−p+1 = 0, . . . , Dt−1 = 0, Dt = 0),

UB(−P )
t = UBt,

and

W (−P )
t = Wt −

P�

p=1

Pr(Yt−p = 1, Dt−p = 1, Dt−p+1 = 0, . . . , Dt−1 = 0, Dt = 0).

It is easy to see that increasing the number of past waves decreases the width of the

identification region.

A.3 P waves before and F waves after t

Combining the previous results gives

LB(−P,+F )
t = LB(−P )

t

= LBt +
P�

p=1

Pr(Yt−p = 1, Dt−p = 1, Dt−p+1 = 0, . . . , Dt−1 = 0, Dt = 0),

UB(−P,+F )
t = UB(+F )

t

= UBt −
F�

f=1

Pr(Yt+f = 0, Dt+f = 1, Dt+f−1 = 0, . . . , Dt+1 = 0, Dt = 0),
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and

W (−P,+F )
t = Wt −

P�

p=1

Pr(Yt−p = 1, Dt−p = 1, Dt−p+1 = 0, . . . , Dt−1 = 0, Dt = 0)−

−
F�

f=1

Pr(Yt+f = 0, Dt+f = 1, Dt+f−1 = 0, . . . , Dt+1 = 0, Dt = 0).
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B Additional results

Table B.1: Number of observations and complete-case estimates by
survey year, gender and cohort.

Cohort Gender 2004 2006 2008

All All n 4008 3926 3733
Prevalencecc 0.062 0.049 0.051

A Male n 404 400 398
Prevalencecc 0.003 0 0.011

B Male n 374 359 355
Prevalencecc 0.029 0.015 0.04

C Male n 398 385 338
Prevalencecc 0.06 0.035 0.04

D Male n 691 662 636
Prevalencecc 0.094 0.056 0.045

A Female n 474 473 471
Prevalencecc 0.015 0.02 0.042

B Female n 560 559 552
Prevalencecc 0.092 0.069 0.07

C Female n 530 528 439
Prevalencecc 0.082 0.105 0.098

D Female n 577 560 544
Prevalencecc 0.079 0.04 0.038

Prevalencecc corresponds to the complete-case estimate of the

prevalence.

The total number of individuals is 4,008 instead of 4,062

because we drop 54 individuals for which age is missing.
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Table B.2: Bootstrapped bounds for the whole sample and by gen-
der and birth cohort.

2004 2006 2008
Cohort Gender Worst Dyn Worst Dyn Worst Dyn

All All L 0.038 0.038 0.026 0.045 0.024 0.049
U 0.342 0.159 0.402 0.289 0.466 0.466
W 0.304 0.122 0.376 0.244 0.442 0.417

A Male L 0.000 0.000 0.000 0.000 0.000 0.000
U 0.265 0.094 0.455 0.322 0.583 0.583
W 0.265 0.094 0.455 0.322 0.583 0.583

B Male L 0.008 0.008 0.000 0.008 0.006 0.020
U 0.321 0.139 0.485 0.370 0.577 0.577
W 0.313 0.131 0.485 0.362 0.572 0.558

C Male L 0.020 0.020 0.010 0.023 0.009 0.024
U 0.452 0.216 0.403 0.309 0.485 0.485
W 0.432 0.196 0.392 0.286 0.476 0.462

D Male L 0.048 0.049 0.024 0.047 0.016 0.047
U 0.395 0.211 0.393 0.305 0.480 0.476
W 0.347 0.162 0.369 0.258 0.464 0.429

A Female L 0.002 0.002 0.002 0.006 0.008 0.015
U 0.359 0.169 0.529 0.385 0.616 0.611
W 0.357 0.167 0.526 0.379 0.607 0.597

B Female L 0.041 0.045 0.027 0.057 0.027 0.067
U 0.420 0.218 0.465 0.333 0.457 0.462
W 0.379 0.173 0.438 0.275 0.429 0.395

C Female L 0.042 0.040 0.055 0.074 0.041 0.075
U 0.364 0.198 0.381 0.280 0.440 0.437
W 0.323 0.158 0.326 0.207 0.399 0.362

D Female L 0.042 0.042 0.016 0.039 0.015 0.039
U 0.331 0.154 0.362 0.236 0.386 0.388
W 0.289 0.113 0.346 0.196 0.371 0.349

L corresponds to the Lower bound, U to the Upper bound and W to the width.

34



Table B.3: Bootstrapped bounds for the whole sample and by re-
gions.

2004 2006 2008
Region Worst Dyn Worst Dyn Worst Dyn

All L 0.038 0.038 0.026 0.045 0.024 0.049
U 0.342 0.159 0.402 0.289 0.466 0.466
W 0.304 0.122 0.376 0.244 0.442 0.417

South L 0.043 0.044 0.028 0.060 0.026 0.068
U 0.339 0.195 0.471 0.372 0.554 0.555
W 0.296 0.150 0.443 0.312 0.528 0.486

Center L 0.031 0.031 0.018 0.033 0.015 0.037
U 0.453 0.199 0.440 0.293 0.436 0.438
W 0.422 0.168 0.421 0.259 0.420 0.401

North L 0.023 0.023 0.018 0.028 0.023 0.037
U 0.285 0.133 0.361 0.275 0.472 0.473
W 0.262 0.110 0.343 0.247 0.449 0.437

L corresponds to the Lower bound, U to the Upper bound and W to the width.
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Table B.6: 2008 Bootstrapped bounds for unit respondents.

Cohort Gender Benchmark IV Month MIV
Worst Dyn Worst Dyn Worst Dyn

All All L 0.030 0.043 0.033 0.047 0.032 0.044
(n=2825) U 0.305 0.306 0.268 0.265 0.303 0.303

Prevalencecc=0.050 W 0.276 0.262 0.235 0.218 0.272 0.259
A Male L 0.000 0.000 0.000 0.000 0.000 0.000

(n=253) U 0.348 0.348 0.303 0.307 0.324 0.324
Prevalencecc=0.006 W 0.348 0.348 0.303 0.307 0.324 0.324

B Male L 0.004 0.008 0.008 0.014 0.004 0.008
(n=238) U 0.357 0.366 0.298 0.298 0.346 0.345

Prevalencecc=0.029 W 0.353 0.357 0.290 0.284 0.341 0.337
C Male L 0.011 0.019 0.015 0.021 0.015 0.024

(n=264) U 0.341 0.348 0.324 0.326 0.307 0.309
Prevalencecc=0.036 W 0.330 0.330 0.309 0.304 0.292 0.285

D Male L 0.018 0.035 0.020 0.041 0.018 0.039
(n=514) U 0.354 0.354 0.300 0.301 0.325 0.324

Prevalencecc=0.043 W 0.337 0.319 0.280 0.260 0.307 0.285
A Female L 0.010 0.014 0.012 0.021 0.014 0.017

(n=293) U 0.396 0.396 0.376 0.381 0.369 0.373
Prevalencecc=0.040 W 0.386 0.382 0.365 0.360 0.354 0.355

B Female L 0.033 0.053 0.043 0.067 0.037 0.056
(n=430) U 0.314 0.316 0.295 0.298 0.306 0.307

Prevalencecc=0.068 W 0.281 0.263 0.253 0.230 0.269 0.252
C Female L 0.053 0.075 0.058 0.085 0.058 0.083

(n=375) U 0.344 0.347 0.305 0.305 0.336 0.336
Prevalencecc=0.099 W 0.291 0.272 0.246 0.220 0.279 0.253

D Female L 0.015 0.022 0.021 0.026 0.017 0.024
(n=458) U 0.269 0.269 0.245 0.244 0.258 0.257

Prevalencecc=0.038 W 0.253 0.247 0.224 0.219 0.240 0.232

Prevalencecc corresponds to the complete-case estimate of the prevalence

L corresponds to the Lower bound, U to the Upper bound and W to the width.
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