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A DYNAMIC BIRTH-DEATH MODEL VIA INTRINSIC LINKAGE 

 
 

Abstract 
 

 An analytically useful dynamic birth-death model is advanced based on Intrinsic Linkage, 

i.e. the linear relationship between Leslie matrix and population functions shown in Eq(1).  The 

key parameter of the model, w, captures the essential contribution of the subordinate components 

of a population projection matrix, and enables population composition over time to be found 

from the sequence of past Leslie matrix intrinsic growth rates.  When those intrinsic growth rates 

follow a polynomial, exponential, or cyclical pattern over time, model population composition 

can be expressed analytically in closed form.  Eq(30) provides a simple sufficiency condition for 

the existence of demographically valid projection matrices.  Three numerical illustrations show 

model values and relationships under metastable, cyclically stationary, and cyclically stable 

patterns of change.  The Intrinsic Linkage approach extends current techniques for dynamic 

modeling, revealing new relationships between population structures and the changing vital rates 

that generate them. 

 

KEY WORDS:  birth-death models, Leslie matrices, dynamic populations, cyclical stability
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A DYNAMIC BIRTH-DEATH MODEL VIA INTRINSIC LINKAGE 

 
 The dominant mathematical model in demography, the stable population, is based on 

constant age-specific rates of birth and death.  In actual populations, age-specific vital rates 

regularly change over time, often substantially.  The ability to model such changes, and to 

analytically specify their implications for how the size and age structure of a population change 

over time, remains a challenge for mathematical demography. 

 Previous work has begun to explore dynamic models, that is models with time-varying 

vital rates.  Coale (1972) and Lee (1974) were pioneering works on birth-death models.  

Bongaarts and Feeney (2002) advanced a flexible dynamic mortality-only model.  Schoen and 

Kim (1994 PAA) and Schoen and Jonsson (2003) developed the metastable (or quadratic 

hyperstable) model that generalized the stable model, allowing fertility to change exponentially 

over both age and time.  Schoen (2006, Chapter 7) discussed several other approaches to 

modeling changing rates, including Intrinsically Dynamic and "hyperstable" models. Yet despite 

the progress to date, there is no generally applicable analytical solution for the age structure 

produced by an arbitrarily changing set of vital rates. 

 The present paper advances a new approach to dynamic modeling that is applicable to a 

broad range of vital rate trajectories.  This “Intrinsic Linkage” approach is based on the 

intuitively plausible idea that the age composition of the time t population projection (or Leslie) 

matrix can be represented as a weighted average of the model population age compositions at 

times t and t−1.  The Intrinsic Linkage assumption leads to new, analytically tractable 

relationships between the trajectory of Leslie matrix intrinsic growth rates and the size and age 

composition of the model at any point in time. 
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THE BASIC INTRINSIC LINKAGE EQUATIONS 

 Consider an n-age group discrete birth-death population model, and let At be the 

population projection (Leslie) matrix that takes the model population from time t−1 to time t.  

Denote the intrinsic or dominant root (or dominant eigenvalue) of At by λt, and let λPt represent 

the growth rate of model population births (i.e. members of the first age group) from time t−1 to 

time t.  Assuming no mortality before the end of childbearing, the intrinsic age composition 

implied by At follows from λt.  With one person in the first age group, there are λt
−1 persons in 

the second age group, λt
−2 persons in the third, and so on. 

 It is reasonable to assume that λt, the long term growth rate of births implied by At, 

modifies λP,t−1 to produce λPt.  Letting that relationship be linear, there must be some scalar 

value, wt, such that 

 λPt = λt(1− wt) + λP,t−1 wt        (1) 

Eq(1) must hold, as any number can be written as a linear combination of any 2 given numbers.  

Formally, one can always find wt from the model and Leslie values (i.e. from λP,t−1, λt, and λPt), 

hence Eq(1) applies to any population and wt can be seen as a parameter that describes how λt 

and λP,t−1 yield λPt. 

 Eq(1) can be readily cumulated over time to express λPt in terms of the sequence of λt and 

wt and the "time 0" model value λP0.  Straightforward algebra yields  

                   t              t                     t  
 λPt = [ λP0 ∏ wj ] + ∑ λj (1−wj) [ ∏  wi  ]      (2) 
                  j=1          j=1                i=j+1 

In a demographically realistic model, λPt must be finite and positive, so the product of the wt 

must be bounded at all times.  With the population projection matrices being, as usual, non-

negative and primitive, weak ergodicity applies (Schoen 2006, Chap. 2) and the initial growth 
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and composition are eventually forgotten.  Thus the first term on the right in Eq(2) must 

disappear as t becomes large, and the product of the wj must become increasingly smaller, so that 

the sum in Eq(2) converges.  Eq(2) is a generally valid expression that relates the time t growth 

rate of births in any model population to the wt weights and the past sequence of Leslie matrix 

growth rates.   

 If parameter w is constant over time and t is large, Eq(2) is changed to a form that is no 

longer simply representational, and the Intrinsic Linkage relationship becomes 

                     t 
 λPt = (1−w) ∑ λj wt−j  = (1−w) [λt + w λt−1 + w2 λt−2 + w3 λt−3 +...+ wt−1 λ1]  (3) 
                                              j=1 

Eq (3) shows that at large t, the growth in the number of model births between times t−1 and t (or 

the relative size of the number in the first age group to that in the second at time t) is the sum of a 

convergent power series in w, where values of |w|<1 to increasingly higher powers are applied to 

earlier period Leslie matrix growth rates.  Since  

 1 − w = 1 / [ 1 + w + w2 + w3 + ...]       (4) 

Eq(3) shows that λPt is a weighted average of λj values, where the most recent λj have the greatest 

weight.   

 Equation (3) is a new result, and is significant as it provides an intuitively meaningful 

relationship between model and Leslie composition/growth rates.  If the λj are constant, then λ = 

λPt and the model is stable.  In general, the power series in Eq(3) describes how earlier λj get 

increasingly smaller weights, and thus become "forgotten" over time.  If there is a regularity in 

the λj that allows an algebraic summation, then Eq(3) can provide a closed form relationship 

between the λj and λPj at all time points. 
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RELATIONSHIPS UNDER INTRINSIC LINKAGE 

 Let us consider some relationships between patterned sequences of Leslie matrix roots 

and model population growth.  Specifically, we consider cases where w is constant over time and 

the λj sequence is linear, quadratic, and metastable. 

The case of Leslie matrices with linearly changing roots and constant w. 

 It is useful to rewrite Eq(3) as a difference in λt values using Eqs (3) and (4).  That yields               

                             t−1 
 λPt = λt +  ∑ (λt−j − λt−j+1 ) wt          (5) 
                  j=1 
 
Now let the λj sequence change linearly, i.e. let 

 λt = b0 + b1 t          (6) 
 
for constants b0 and b1.  Then Eq(3) becomes 
 
 λPt = λt − b1 w / (1−w)         (7) 
 
Thus, when w is constant, λPt changes linearly with λt, with the 2 growth rates separated by a 

constant amount at every time point. 

 To see how the growth rate of model population births, λPt, varies with parameter w in the 

linear case, we can take the partial derivative of Eq(7) and write 

 ∂ λPt /∂w = − b1 / (1−w)2         (8) 

If b1 > 0, i.e. when λPt is increasing, then an increase in w implies a reduction in λPt. 

The case of Leslie matrices with quadratically changing roots. 

 Let λt change quadratically, i.e. let  

 λt = b0 + b1 t + b2 t2         (9) 
 
Then λPt can be found using Eqs (3) - (5) and the Maple derived summation relationship 
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                     t 
 S2 = ∑ b2 j wt−j = [ b2t (1−w) − wb2 ] / (1−w)2      (10) 
                    j=1  

The result is 

 λPt = λt − wb1/(1−w) − wb2 [ 2t(1−w)−(1+w) ] / (1−w)2    (11) 

Here, the difference between λt and λPt changes linearly with time.   

 The λPt associated with cubic and higher powers of change in λt can be found using the 

above approach, but at the price of more complex relationships.  In principle, at least, Eq(3) can 

yield an explicit relationship for λPt for any polynomial λt. 

The case of Leslie matrices from a metastable population model. 

 The difference formulation of Eq(5) leads to an explicit solution for λPt in the metastable 

model, that is the case where 

 λt = c kt          (12) 

and c and k are constants.  When k=1, the population is stable.  It follows from Eq(3) that 

 λPt = c kt [ k (1−w) / (k−w) ]        (13) 

or that λPt is ckt times a constant factor [previously denoted λs by Schoen (2006:134)] that 

depends on w and on exponential growth parameter k.  The constant w Intrinsic Linkage 

formulation thus leads to a new, closed form expression for λs, specifically 

 λs = k (1−w) / (k−w)         (14) 

 To consider how the metastable λPt varies with parameter w, we differentiate Eq(13) with 

respect to w and find 

 ∂ λPt /∂w = −c kt+1 (k−1) / (k−w)2       (15) 

If k>1 so that λPt is increasing over time, then an increase in w decreases λPt.  As in the linear 

case, a change in w moves λPt in the opposite direction. 
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CYCLICALLY STABLE POPULATION MODELS WITH INTRINSIC LINKAGE 

 Cyclically stable populations arise naturally in a number of applications.  Their analysis 

was pioneered by Skellam (1967), with significant work by Namboodiri (1969) and Tuljapurkar 

(1985; 1990).  The Intrinsic Linkage approach is well suited to analyzing cyclical populations, 

and equations (2) and (3) yield new and explicit solutions for the λPt trajectory when λt varies 

cyclically.   

The case where cycle length is 2. 

  Consider the simplest case under Eq(2), where λt alternates in value between  λ1 (when t 

is odd) and λ2 (when t is even).  Then, with w1 associated with λ1 and w2 associated with λ2, 

Eq(1) implies 

 λP1 = λ1 (1−w1) + λP2 w1 

 λP2 = λ2(1−w2) + λP1 w2        (16) 

Using Eq(2) with t large, and summing the terms in λ1 and λ2 separately, gives the solutions  

 λP1 =  [ λ1(1−w1) + λ2 w1 (1−w2) ] / [ 1 − w1w2 ] 

 λP2 =  [ λ2(1−w2) + λ1 w2 (1−w1) ] / [ 1 − w1w2 ]     (17) 

Under Eq(3), with w constant, the solutions in Eq(17) reduce to 

 λP1 =  [ λ1 + λ2 w  ] / [ 1 + w ] 

 λP2 =  [ λ2 + λ1 w ] / [ 1 + w ]        (18) 

with λP1 + λP2 = λ1 + λ2.   

The case where cycle length is 3 and w is constant. 

 When each cycle spans 3 intervals, the 3 constant w specifying equations are  

 λP1 = λ1 (1−w) + λP3 w 

 λP2 = λ2(1−w) + λP1 w 
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 λP3 = λ3(1−w) + λP2 w         (19) 

The solutions for the growth rates of model births are then 

 λP1 = (λ1 + w λ3 + w2 λ2) / ( 1 + w + w2 ) 

 λP2 = (λ2 + w λ1 + w2 λ3) / ( 1 + w + w2 ) 

 λP3 = (λ3 + w λ2 + w2 λ1) / ( 1 + w + w2 )      (20) 

which implies λP1 + λP2 + λP3 = λ1 + λ2 + λ3.     

The general case where cycle length is m and w is constant. 

 The above approach readily generalizes to cycle lengths of m intervals, where m is any 

positive integer.  With w constant, the m specifying equations are   

 λP1 = λ1 (1−w) + λPm w 

 λP2 = λ2(1−w) + λP1 w 
                              . 
                              . 
                              .  
 λPm = λm(1−w) + λP,m−1 w        (21) 

Note in the first equation that λPm precedes λP1.  The straightforward solution can be written 

                      m                                  m 
 λPj =  ∑ wi−1 λj−i+1 / ( ∑ wi−1 )        (22) 
                      i=1                               i=1 

where the value of λ0 is taken to be λm [as in Eqs(16)-(18)].  As before, ∑ λPj = ∑ λj, with the 

sums over j ranging from l to m. 

 Eq(22) shows the new Intrinsic Linkage solutions for population values in cyclically 

stable models.  Under constant w, closed form solutions that are essentially truncated versions of 

Eq(3) link the growth in the number of model births to the intrinsic growth rates of each cycle's 

Leslie matrices. 
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SPECIFYING THE POPULATION PROJECTION MATRICES 

 The Intrinsic Linkage model is not complete until the underlying sequence of Leslie 

matrices is fully specified.  The best way to approach the specification of At, the Leslie matrix 

that moves the time t−1 model population to time t, is to begin with models that have only 2 

reproductive age groups. 

Specifying the 2-age group Intrinsic Linkage Leslie matrix. 

 Let the 2 x 2 Intrinsic Linkage Leslie matrix be written in the form 

  ┌                   ┐ 
 At =  │ λt(1−at )    λt

2 at   │       (23) 
  │      1             0 │ 
  └                    ┘ 
 
where again λt is the dominant eigenvalue of At and at is the contribution to the number of model 

births from the second age group when the dominant eigenvalue is 1.  Schoen (2006: 138-39) 

shows that such a representation is always possible and describes how it can be implemented.  

With any number of age groups, the coefficients of the λ's (here at and (1−at)) always sum to 1.   

Strictly speaking, the model provides a "birth" trajectory, as all persons in age group 1 at time 

t−1 survive to be in age group 2 at time t.  Since λt > 0 and all of the elements of the Leslie 

matrix are non-negative, we must have 

 0 ≤ at ≤1          (24) 

for a demographically valid population projection matrix. 

 Let us scale the model so that the population at time t−1 is described by the vector  

  ┌         ┐ 
 xt−1 =  │        1 │        (25) 
  │    1/ λP,t−1 │ 
  └         ┘ 
 
and the time t model population is given by 
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   ┌        ┐ 
 xt   =         λPt  │   1 │        (26) 
   │1/ λPt │ 
   └        ┘ 
 
Eqs(23) - (26) must (and do) satisfy the matrix projection relationship 

 xt  =  At xt−1           (27) 

 Using those equations and the Intrinsic Linkage relationship of Eq(1), we can find a 

scalar equation from the first row of matrix Eq(27) and write 

 λPt  =  λt (1− at) + at λt
2 / λP,t−1  =  λt (1− wt) + λP,t−1 wt    (28) 

Eliminating λPt and using the last equality we find  

 at = (−wt) λP,t−1 / λt          (29) 

Eq(29) provides the 2-age group Intrinsic Linkage solution for at, and thus all of the elements of  

At are determined.   

 Because at must be nonnegative and λP,t−1 and λt are always positive, Eq(29) indicates that 

a demographically valid model for time t requires wt < 0.  If wt is 0, then at is 0 and At is not 

primitive.  Since the maximum permissible value of at is 1, Eq(29) implies the inequality 

 λt  > (−wt) λP,t−1         (30) 

for a valid Leslie matrix.  Combining Eqs(29) and (30), a valid time t model must have  

 0 > wt > − λt / λP,t−1         (31) 

For a valid 2-age model, the choice of either wt or λt is constrained by Eq(31).  Still, at some 

specific time t, it is possible for the value of wt to be less than −1.   

 Models with w  constant over time.  If w=0, then λt = λPt and At is not primitive.  

Moreover, in order to have convergence in Eq(3), we must have −1 < w < 0.  Using Eqs(3) and 

(4) with w≠0, we can write the inequality 
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 λt  > (−w) (1−w) [λt−1 + w λt−2 + w2 λt−3 + w3 λt−4 + ...]    (32) 

Eq(32) provides a necessary and sufficient condition for a valid constant w, 2-age group Leslie 

matrix.   

 In a constant w Intrinsic Linkage model with −1 < w < 0, Eq(1) implies that λt is always 

between λPt and λP,t−1.  If λt > λP,t−1, then λPt > λt , while if λt < λP,t−1 , then λPt < λt.  In contrast, if 

1>w>0, then λPt is always between λt  and λP,t−1. 

 With constant w and a known λt sequence, closed form solutions for at in terms of the λt 

may be possible.  For example, consider the 2-age group metastable model of Eqs(12)-(14).  

Eq(29) leads to 

 a = (−w) (1−w) / (k − w)        (33) 

with parameter a also constant over time.  Since in most cases the metastable parameter k is close 

to 1, a ≈ −w and the demographic validity of the model can quickly be established.   

Specifying the 3-age group Intrinsic Linkage Leslie matrix. 

 Leslie matrices with 3 reproductive age groups can provide a reasonable representation of 

most human population dynamics.  Let the first row of 3-age group Leslie matrix At be 

[(1−at−bt) λt , at λt
2, bt λt

3], with, as usual, the matrix having ones on the subdiagonal and zeros 

elsewhere.  Again we must have, 0 ≤at, bt ≤1 and (1−at−bt) ≥ 0.  The time t−1 model population 

can be scaled so that 

 xt−1
' = [ 1, 1/ λP,t−1 , 1/( λP,t−1 λP,t−2 ) ]       (34) 

where the prime (') indicates the transposition from a column vector to a row vector.   

 The first row of projection Eq(27) then yields the equation 

 (−wt) / λt = at / λP,t−1 + bt [ (λt
2 − λP,t−1 λP,t−2 ) / (λP,t−1 λP,t−2{ λt − λP,t−1})]  (35) 
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With 3 age groups there are 2 parameters, at and bt, that are constrained by only one equation, i.e. 

Eq(35).  As a result, a valid model may arise in many ways, and at and bt are not fully determined 

by the Intrinsic Linkage constraint.  That flexibility in the model makes it possible to have a 

value of wt that is less than −1 or greater than 1, as long as the sum in Eq(2) always converges. 

 Three points should be made.  First, if bt = 0, then we again have the case of Eq(29).  

Hence Eq(31) (or Eq(32) if w is constant) provides a sufficient condition for a valid model, 

though it is no longer necessary. 

 Second, if w is constant over time, a long term valid Intrinsic Linkage model again 

requires that −1 < w < 0.  To see why, let us consider the model at time t, and assume that λP,t−1 

and λP,t−2 are known.  If λP,t−1 = λP,t−2, then the population is stable (or At−1 is not primitive).  If 

not, let us assume that λP,t−2 > λP,t−1 (though the same line of argument holds if λP,t−2 < λP,t−1).   

From Eq(34), for w>0, a valid model requires that the second term on the right be negative, 

hence λt must be between λP,t−1 and λP,t−2 and greater than the geometric mean of λP,t−1 and λP,t−2.  

With w>0, Eq(1) implies that λPt must be between λt and λP,t−1.  Now we are back to the starting 

scenario, but the gap between λP,t−1 and λPt is substantially smaller than the gap that existed 

between λP,t−1 and λP,t−2.  Over time, with w>0, that gap must go to zero, and the population will 

either become stable or the population projection matrix will no longer be primitive.  Since w≥0 

does not yield a valid long term model, we are left with −1 < w < 0. 

 Third, because the 3-age group model has an additional degree of freedom, we can 

introduce an additional constraint, say one related to the Net Reproduction Rate (NRR).  

Following Lotka, the NRR can be thought of as the growth that occurs over a generation, as in 

the stable population relationship 

 NRR = exp(rT)         (36) 
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where r is Lotka's intrinsic growth rate and T is the length of a generation (Schoen 2006:11).  A 

3-age group model typically has the reproductive age groups 0-14, 15-29, and 30-44, and age 30 

is often close to the length of a generation.  In the discrete case, with λt representing 15 years of 

growth from time t−1 to time t, we can write 

 NRRt = λt
2 = (1−at−bt) λt + at λt

2 + bt λt
3       (37) 

Using Eqs(37), (1), and (27), we find that the parameters of At are given by 

 at = { (−w) λP,t−1 λP,t−2 (λt + 1)[ λP,t−1 − λt] − λt λP,t−1 λP,t−2 } /DENOM  
 
and 
 
 bt  = { λP,t−2 [w λP,t−1 + λt ][ λP,t−1 − λt ] } / DENOM 
 
where 
 
 DENOM = λt

2 [λP,t−2 (λP,t−1 − 1) − λt (λP,t−2 − 1) ]     (38) 
 
An analyst can thus start with a fixed w and a sequence of NRRs, and derive the accompanying 

sequences of λt's, λPt's, and Leslie matrices. 

Specifying the Intrinsic Linkage Leslie matrix for 4 or more age groups. 

 Leslie matrices with 4 or more age groups have relationships that parallel those in 3-age 

models.  Eqs(31) and (32) still provide sufficient conditions for a valid Leslie matrix in the 

general and constant w cases, respectively.  In equations that parallel Eq(35), there are additional 

terms on the right side, increasing the likelihood that a valid Leslie matrix exists.  For example, 

in the 4-age case, there is an additional term of the form  

 [λt
3 − λP,t−1 λP,t−2 λP,t−3 ] / [λP,t−1 λP,t−2 λP,t−3 (λt − λP,t−1)]   

Still, in the constant w case, the same dynamic discussed after Eq(35) continues to operate, so in 

long term models the value of w must satisfy −1 < w < 0.   
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NUMERICAL ILLUSTRATIONS INVOLVING INTRINSIC LINKAGES 

 Here, numerical values for 3-age group Intrinsic Linkage models are presented for (i) a 

metastable model, (ii) a 3-cycle cyclically stationary model, and (iii) a 4-cycle cyclically stable 

model calculated from NRRs.  Models with 3 reproductive age groups are used to simplify the 

presentation while preserving the essential population dynamics. 

Values in a 3-age group metastable model. 

 The metastable model allows fertility to steadily increase or decrease, and can provide an 

analytical bridge between stable population regimes, such as in the transition to stationarity.   

Table 1 shows numerical relationships under two values of the constant Intrinsic Linkage 

parameter w, specifically −0.6 and −0.4.  Values for the metastable parameters are c=1.02 and 

k=1.005, with Leslie matrix value b set at 0.05.   

 Since the metastable population is growing, fertility values in the first row of the Leslie 

matrix increase over time, while the relative size of the population in the older age groups 

decreases.  Leslie growth rate λt increases over time, as does λPt=λtλs.  When w increases from 

−0.6 to −0.4, there is a slight decrease in metastable growth factor λs, but over a 10 interval 

period the resultant difference in births is only that between 1.634 and 1.627, a mere 0.4%.  The 

change in w does have a substantial effect on age-specific fertility values, with the larger w 

associated with a much earlier fertility schedule.  However, because the value of b was fixed, at 

the same time point the first row of both Leslie matrices had identical third elements. 

Values in a 3-age group, 3-cycle cyclically stationary model. 

 A cyclically stationary population provides analysts with a flexible model for studying 

fluctuations in the absence of long term growth.  The Intrinsic Linkage approach provides 

explicit relationships that facilitate the construction of such models.   
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 Table 2 shows values for a 3-cycle, cyclically stationary, Intrinsic Linkage model with 3 

age groups.  For stationarity, we must have λP1 λP2 λP3 = 1, i.e. no growth over each cycle.    

Combined with Eq(20), the stationarity constraint enables the model to be solved directly for the 

λPt and constant w, though the λt must be chosen carefully to allow a valid model.  An easier 

approach is to choose a value of w in the broad range that satisfies the sufficiency condition in 

Eqs(30) or (32), and solve for the λPt and one of the λt.  Table 2 does the latter, with λ1 = 0.9, λ2 = 

1.1, and w set at either −0.8 or −0.4.  In the Leslie matrix, there is only one constraint on each 

pair of aj and bj.  To simplify matters while insuring a valid model, bj is always set at 0.02.   

 Table 2 indicates that the choice of w has little effect on the calculated value of λ3, but a 

definite impact on the values of the λPt.  The more negative value of w leads to large values for 

the aj, and a concentration of fertility in the second age group.  The less negative value of w is 

associated with a marked shift in fertility to the first age group.  Because the cycle length is the 

same as the number of age groups, total population size is constant over time, and equals 3.0666 

when w=−0.8 and 2.9185 when w=−0.4.  Population vector x3 is identical to x0, and Leslie 

matrix A4 is the same as A1.  Within a cycle, however, cohort size varies by up to 24% when 

w=−0.8 and up to 19% when w=−0.4.  For both choices of w, the sum of the three λPt equals the 

sum of the three λt.   

Values in a 3-age group, 4-cycle cyclically stable model derived from NRRs. 

 Cyclical growth (or decline) is common, and cycles four intervals long are often 

associated with seasonal variations.  Table 3 presents values from a 3-age group, 4-cycle 

constant w cyclically stable population where the growth rates are obtained from NRRs using 

Eq(37).  Because the NRRs add a further constraint, the sufficiency condition in Eq(32) no 
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longer applies, and a valid model is not always possible.  With the NRR values used here, i.e. 

0.95, 1.05, 1.25, and 0.85, no valid model was found when w was −0.8 or less or −0.5 or more.   

 Table 3 shows Intrinsically Linked model values when w is −0.7 and −0.6.  When 

w=−0.7, the λP values are consistently further from 1 than when w=−0.6.  Moreover, when 

w=−0.7, the aj values are uniformly bigger and the bj values uniformly smaller than when 

w=−0.6, signaling that a more negative w shifts fertility away from the highest age and toward 

the second age group.  The effect is most dramatic in Leslie matrix A3, where the fertility value 

in the second age group when w=−0.6 is quite small.   

 The cyclically stable population declines in size from cycle to cycle, as the product of the 

four λj is 0.93353 when w=−0.7 and 0.97872 when w=−0.6.  Population vector x4 is identical to 

x0 times the product of the four λj's.  Between times 0 and 4, total population size varies from 

3.26 to 3.63 when w=−0.7 and from 3.19 to 3.44 when w=−0.6.   

 There is substantial variation in cohort size within each cycle.  When w=−0.7, relative 

cohort sizes vary by over 45%, while when w=−0.6, they vary by 33%.  Cohort NRRs vary even 

more, going from 0.49 to 1.66 when w=−0.7 and from 0.34 to 1.83 when w=−0.6.  The NRRs of 

successive cohorts alternate between being substantially above replacement to being 

substantially below replacement. 

SUMMARY AND CONCLUSIONS 

 The Intrinsic Linkage relationship in Eq(1) connects λt, the intrinsic growth rate of the 

time t Leslie matrix, to λPt and λP,t−1, the model growth rate of births at times t and t−1.  The 

Intrinsic Linkage approach is built on the idea that it is plausible to represent λt as a linear 

combination of λPt and λP,t−1.  With Intrinsic Linkage, each λPt can be expressed as a convergent 

power series in λt and the linear weight parameter, wt.   
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 When λt has a polynomial, exponential, or cyclical trajectory and w is constant over time, 

new closed form relationships between λt and λPt emerge.  The construction of Intrinsically 

Linked models is straightforward, and several illustrative numerical examples of cyclical and 

metastable models are presented. 

 Much of the demographic content of Leslie matrix At, of whatever size, appears to be 

embodied in a single number: eigenvalue λt.  The dominant root of At reflects not only intrinsic 

growth but, in the absence of mortality before the end of childbearing, the long term age 

composition as well.  In determining the size and composition of the model population, much of 

the contribution of all the subordinate components of At can be captured by Intrinsic Linkage 

parameter w.  The analytical advantages of the Intrinsic Linkage approach flow from its focus on 

those two key measures. 

 In sum, the Intrinsic Linkage approach provides a new and flexible way to link 

population projection matrices with the age structure of observed (or model) populations.  

Intrinsic Linkage extends current methods for the dynamic modeling of birth-death models, 

including cyclically stable and cyclically stationary models, and affords new options for 

analyzing populations with changing vital rates.   
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Table 1. Numerical relationships in a 3-reproductive age group birth-death metastable model 
with Intrinsic Linkage, for 2 values of constant parameter w 
 
 
Item     w = −0.6    w = −0.4 
 
a     0.41747    0.22790 
 
λs     1.00187    1.00142 
 
λ1      1.02510    1.02510 
 
λP1      1.02702    1.02656 
 
λ10      1.07216    1.07216 
 
λP10      1.07417    1.07369 
 
First row of Leslie   [.54589, .43869, .05386]  [.74023, .23948, .05386] 
matrix A1 
 
First row of Leslie   [.57095, .47990, .06162]  [.77421, .26198, .06162] 
matrix A10 
 
Time 0 model   [1, .97856, .96237]   [1, .97900, .96323] 
population x0

' 

 
Time 10 model        (1.63397) [1, .93561, .87974]         (1.62672) [1, .93603, .88052] 
population x10

' 

 
 
NOTES. The model is based on text Eqs(12)-(14) with c=1.02, k=1.005, and b=0.05.  Population 
growth over time was accumulated using the relationship that the product of kj, j going from 1 to 
n equals kn(n+1)/2.  The value of parameter a in the 3-age metastable model is found from 
 
a = {b k (k−w)3 − (1−w)2 [w (1−k)+b (k−z)]} / {w2 (1−k) − k2 (1−w) + (k−w)} 
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Table 2. Numerical relationships in a Cyclically Stationary 3-reproductive age group, 3-cycle 
birth-death model with Intrinsic Linkage, for 2 values of constant parameter w 
 
 
Item     w = −0.8    w = −0.4 
 
λ3      1.03749    1.02517 
 
λP1      0.92144    0.87623 
 
λP2      1.24285    1.18951 
  
λP3      0.87320    0.95944 
 
 
a1     .94148     0.33271 
a2      .61814     0.28422 
a3      .95108     0.46533 
 
b1     .02     .02    
b2      .02     .02 
b3      .02     .02 
 
 
First row of Leslie   [.03467, .76260, .01458]   [.58256, .26949, .01458] 
matrix A1 
 
First row of Leslie   [.39805, .74794, .02662]  [.76535, .34391, .02662] 
matrix A2  

 
First row of Leslie   [.03001, 1.02373, .02233]  [.52763, .48905, .02155] 
matrix A3   
 
Time 0 model       [1, 1.14521, .92144]     [1, 1.04228, .87623] 
population x0

' 

 
Time 1 model              (.92144)[1, 1.08526, 1.24285]       (.87623 ) [1, 1.14126, 1.18951] 
population x1

' 
 
Time 2 model              (1.14521)[1, .80460, .87320]         (1.04228) [1, .84068, .95944] 
population x2

'  
 
 
NOTES. The model is based on text Eqs(19)-(22) with λ1=0.9 and λ2=1.1.  Since λP1 λP2 λP3 =1, 
there is no population growth over each 3-interval cycle. 
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Table 3. Numerical relationships in a Cyclically Stable 3-reproductive age group, 4-cycle birth-
death model with Intrinsic Linkage, for 2 values of constant parameter w 
 
Item     w = −0.7    w = −0.6 
 
λ1        .97468      .97468 
λ2     1.02470    1.02470 
λ3     1.11803    1.11803 
λ4        .92195      .92195 
 
λP1      1.17601    1.10784 
λP2        .91877      .97481 
λP3      1.25752    1.20397 
λP4       .68706      .75275 
 
a1     .42408     .41490 
a2      .90853     .87013 
a3      .35493     .03459 
a4     .90669     .44133 
 
b1     .29165     .29630    
b2      .04518     .06414 
b3      .30456     .45580 
b4      .04855     .29068 
 
First row of A1   [.27707, .40288, .27005]  [.28149, .39416, .27436] 
 
First row of A2   [.04744, .95396, .04861]  [.06735, .91364, .06901] 
 
First row of A3   [.38070, .44366, .42564]  [.56975, .04324, .63700] 
 
First row of A4  [.04127, .77069, .03805]  [.24707, .37513, .22779] 
 
Population x0

'    [1, 1.45548, 1.15742]   [1, 1.32847, 1.10341] 
 
Population x1

'         (1.17601)[1, .85033, 1.23764]         (1.10784)[1, .90266, 1.19915] 
 
Population x2

'         (1.08049)[1, 1.08841, .92551]         (1.07993)[1, 1.02584, .92598] 
 
Population x3

'         (1.35873)[1, .79522, .86552]         (1.30020)[1, .83059, .85205] 
 
NOTES. The model is based on text Eqs(19)-(22) and (37) with the number in the first age group 
at time 0 scaled to 1 and NRR1=0.95, NRR2=1.05, NRR3=1.25, and NRR4=0.85.  There is 
population decline over each 4-interval cycle, by a factor of 0.93353 when w=−0.7 and by a 
factor of 0.97872 when w=−0.6. 


