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ABSTRACT

Current methods for reconstructing human population structures of the past are

deterministic or do not formally account for measurement error. We propose a method

for simultaneously estimating age-specific population counts, fertility rates, mortality

rates and net international migration flows from fragmentary data, that incorporates

measurement error. Inference is based on joint posterior probability distributions

which yield fully probabilistic interval estimates. It is designed for the kind of data
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commonly collected in modern demographic surveys and censuses. Population dy-

namics over the period of reconstruction are modeled by embedding formal demo-

graphic accounting relationships in a Bayesian hierarchical model. Informative priors

are specified for vital rates, migration rates, population counts at baseline, and the

accuracies of their respective measurements. We investigate calibration of central

posterior marginal probability intervals by simulation and demonstrate the method

by reconstructing the female population of Burkina Faso from 1960 to 2000.

Keywords

Bayesian hierarchical model; Cohort component model; Fertility rate; Markov

chain Monte Carlo; International migration; Mortality rate.

1. INTRODUCTION

Every two years the United Nations Population Division (UNPD) publishes de-

tailed estimates of key demographic parameters for all countries in the world; they

appear in the United Nations World Population Prospects (UNWPP; e.g., United

Nations 2009). The parameters reported include age-specific fertility and mortality

rates (vital rates), population counts and international migration rates. These figures

are used for the development and assessment of policy and are of particular impor-

tance for countries that lack their own well-resourced official statistical systems. For

many of these countries, the UNPD is a key partner in the process of compiling,

analyzing and publishing the data.

The United Nations World Population Prospects (UNWPP) tables can be clas-

sified into two broad groups, known as estimates and projections. Projections are

predictions about demographic parameters in the future, while estimates concern
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population structures of the past. We will use the term reconstruction which we find

less ambiguous. Nevertheless, use of the term “estimate” agrees with standard usage

in statistics; data about demographic parameters in the past are used to estimate the

true values. Between the biennial editions of the UNWPP, new data are collected,

and old data become available, thus revisions must be made to the reconstructions

to accommodate it.

Implicit in the previous paragraph is the assertion that there is uncertainty in the

measurements. This is hardly controversial; demographers have long acknowledged

that some parameters are almost immune to perfect measurement and many so-called

indirect methods exist for estimating them (e.g., United Nations 1983). Most of these,

however, are focused on obtaining a best point estimate of a single quantity. Although

it has been standard practice to produce ranges of estimates for many parameters

based on different scenarios, high, medium and low fertility for example, the ranges

produced cannot be interpreted probabilistically. This approach is still commonly

used for projections, but since the mid 1990s new methods began to appear which

do yield probabilistic predictions; Lee (1998) and Booth (2006) provided reviews. In

contrast, there has been relatively little work on the development of fully probabilistic

methods for demographic reconstruction. Here we propose a general method for

reconstruction that accounts for measurement uncertainty and works with the type

of demographic data that have commonly been collected for most countries over the

last 60 years or so. It has been designed to fit within the UNPD’s existing work-flow,

but we hope it is general enough to have broad appeal.

In Section 2 we will briefly describe existing reconstruction techniques from the

demographic literature; a discussion of relevant work in other areas such as ecology

and fisheries will be deferred until the Discussion. In Section 3 we lay down our
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notation and describe the method. In Section 4, we investigate some statistical prop-

erties of our method through simulation before applying it to real data from Burkina

Faso in Section 5. We close with a summary of the results, a literature review and a

discussion of some technical issues in Section 6.

2. METHODS OF RECONSTRUCTION IN

DEMOGRAPHY

Outside of official statistical agencies, demographers have undertaken population

reconstructions for at least two reasons: historical studies of populations of the past

(e.g., Wrigley and Schofield 1981) and to estimate excess mortality in crises such

as famine or social upheaval (e.g., Boyle and Grada 1986, Heuveline 1998, Merli

1998, Goodkind and West 2001). The most commonly used methods are based on

the demographic balancing equations. These are the basic accounting relationships

which state that the population size at time t + δ is equal to the size at time t plus

births and immigrants, minus deaths and emigrants. These relationships are encoded

in the cohort component model of population projection (CCMPP; Lewis 1942, Leslie

1945, 1948). Given the size and age-structure of a population at some baseline time,

its size and structure at any point in the future can be determined from the baseline

population and the fertility, mortality and international migration rates that prevail

over the period of reconstruction.

The back projection method of reconstruction (Wrigley and Schofield 1981) at-

tempts to apply these relationships in reverse by using an estimate of population

structure at the terminal year of the period of reconstruction. This approach is

problematic since the cohort component model of population projection (CCMPP)

procedure is not formally invertible. To produce sensible results, some additional
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constraints have to be imposed or somewhat ad-hoc fixes applied.

In response to these concerns, Lee (1971, 1974) proposed the method of inverse

projection. Inverse projection enacts the reconstruction forward through time; it is

named for the fact that, instead of estimating counts of births and deaths from rates,

count data are used to infer rates.

Both of these methods have been developed since their inception. For example,

McCaa and Barbi (2004) and Rosina (2004) described extensions of inverse projec-

tion. Oeppen (1993) proposed generalize inverse projection (GIP). This method

produces estimates of demographic parameters by minimizing the discrepancy be-

tween population structures implied by the estimates and those observed. Additional

constraints, such as a smoothness criterion on estimates of migration, are used to

ensure parameter identifiability. However, all of the extended methods remain purely

deterministic.

A stochastic reconstruction method was proposed by Bertino and Sonnino (2003)

who modeled childbirth and death as inhomogeneous Poisson processes. The method

is designed to work with counts of births and deaths aggregated over age and so re-

quires the analyst to specify model age-patterns for fertility and mortality, although

different schedules can be chosen for different sub-periods. These schedules are taken

as the intensity functions of the process and realizations are simulated through time

to produce sequences of empirical estimates of population age structures. Hence, the

only source of variation accounted for is natural variation around the demographic

rates; the total numbers of deaths by year are assumed to be recorded without er-

ror. Moreover, international migration is assumed to be negligible over the period of

reconstruction.

Finally, all of the above methods were designed to work with aggregate data of
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the kind sometimes found in European parish registers. The data available for many

countries in our intended application is not as detailed, even for periods stretching as

little as 50 years into the past. The aim of this article is to introduce a new method

of reconstruction that uses measurements of demographic parameters available for

40–50 years in the past from multiple noisy data sources. Moreover, uncertainty due

to measurement error is expressed as probability distributions and intervals rather

than deterministic scenario-based ranges.

3. METHOD

In this article we restrict our attention to the dynamics of populations of females

only; extension to two-sex populations is left for future work. The parameters of

interest are the basic demographic parameters: age- and time-specific vital rates, net

international migration flows and population counts. In the sequel we will refer to

“international migration” as simply “migration” as this is the only type we consider.

The method we propose can be viewed as a reconciliation of two different estimates

of age-specific population counts, namely the estimate based on direct enumeration

or surveys (e.g., censuses) and the estimate from applying the CCMPP to measure-

ments of fertility, mortality and migration. The reconciliation is through a Bayesian

model which provides probabilistic posterior distributions of all of the parameters

of interest. The posterior distributions summarize uncertainty due to measurement

error. Probability intervals for summary measures such as total fertility rate (TFR)

and life expectancy at birth (LEB) can also be easily calculated.
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3.1. Notation and Terminology

We will index all demographic parameters by age, denoted by a, and time, denoted

by t. Age is measured on an open-ended scale with the largest value A+, 80 years

and older, for example. We will be interested in the value of the key parameters at

five-year increments of age and time, a = 0, 5, . . . , A+ and t = t0, t0 + 5, . . . , T . We

will use the symbol A++ to refer to the age at time t of those who were aged A+

for the first time at time t − 5. Furthermore, a
[fert]
L and a

[fert]
U will refer to the lower

and upper ages of non-zero fertility, respectively. Finally, we will need to refer to

a special subset of time-points for which censuses or other direct estimates of the

population counts are available; we denote these times by t
[cen]
L , . . . , t

[cen]
U where “L”

and “U” indicate lower and upper limits.

We adopt the standard demographic definition of fertility rate, and let fa,t denote

the ratio of the number of births to women in the age range [a, a+5) to the number of

person years lived by those women over the time period [t, t+ 5) (Preston, Heuveline,

and Guillot 2001).

Mortality will be expressed as the proportion of people who survive from one age

group to the next. Thus we set sa,t to be the proportion in the age range [a− 5, a) at

time t who survive to be aged [a, a+ 5) at time t+ 5. That is, sa,t is the proportion

of people surviving into the age range [a, a+ 5) over the 5 years between t and t+ 5.

The number of people aged [a, a+ 5) at exact time t will be denoted by na,t.

Net migration over a period of time will be measured in proportionate terms; let

ga,t be the net number of migrants to the population aged [a, a + 5) who migrate

during the time period [t, t+ 5), expressed as a proportion of na,t. Thus, the share of

na,t+5 − na,t attributable to migration is ga,tna,t.

Bold face and omission of the age index will be used to denote vectors of particular
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age-specific parameters for a given time. For example, f t is the vector of age-specific

fertility rates for the period [t, t+ 5). When convenient, we will use θ to represent

(nt=t0 ,f t0 ,f t0+5, . . . ,fT , st0 , . . . , sT , gt0 , . . . , gT ),

the vector of all age-time-specific parameters.

To avoid confusion when we refer to periods of time, we will use the term “re-

construction period” to indicate the span of time over which the population is recon-

structed.

3.2. Model Description

3.2.1. A Hierarchical Model

Given nt, f t, st and gt, the CCMPP gives nt+5 via the deterministic relationship
n0,t+5

n5,t+5
...

nA+−5,t+5

nA+,t+5

 =


f̃0,t f̃5,t · · · f̃A+−5,t f̃A+,t

s5,t 0 0 0

0 s10,t
. . . 0 0

0 0 0 0
0 0 · · · sA+,t sA++,t




n0,t(1 + g0,t/2)
n5,t(1 + g0,t/2)

...
nA+−5,t(1 + gA+−5,t/2)
nA+,t(1 + gA+,t/2)

+


n0,tg0,t/2
n5,tg5,t/2

...
nA+−5,tgA+−5,t/2
nA+,tgA+,t/2


(1)

where

f̃a,t = 5(s0,t/2)(1 + SRB)−1
(
fa,t + f(a+5),t · sa+5,t

)
,

and the sex ratio at birth (SRB) is taken to be fixed at 1.05, a standard default (Pre-

ston et al. 2001). We use sA++,t to denote the proportion of those in the open-ended

interval who survive to time t+ 5. We will abbreviate (1) as nt+5 = M(nt,f t, st, gt).

We use an asterisk (∗) to distinguish between the unknown, true values and mea-

surements of them based on data. Specifically, let fa,t be the true fertility rate and

f ∗a,t be a measurement of it, and similarly for all other parameters of interest. In what

follows, we will use D to represent the set of all such measurements.

DRAFT ONLY: DO NOT CITE OR CIRCULATE 8



DRAFT ONLY: DO NOT CITE OR CIRCULATE

In addition to a measurement of the population size at baseline (n∗t=t0
), measure-

ments of population counts at exact times in (t0, T ] are typically available. These

direct measurements might be from censuses or demographic surveys. Therefore, if

n∗t0 , n
∗
t+5, f

∗
t , s

∗
t and g∗t are available, we have two estimates of nt+5, namely n∗t+5

and M(nt = M(nt−5),f
∗
t , s
∗
t , g
∗
t ) where M(nt0) is defined to be n∗t0 . We combine

these two sources into a joint distribution of all parameters in the following four-level

hierarchical model, where we have made the simplifying assumption that the elements

of θ are mutually independent a priori :

Level 1 : log n∗a,t |na,t, σ
2
n ∼ Normal

(
log na,t, σ

2
n

)
, t = t

[cen]
L , . . . , t

[cen]
U (2)

Level 2 : na,t |nt−5,f t−5, st−5, gt−5 = M(nt−5,f t−5, st−5, gt−5), (3)

t = t0 + 5, t0 + 10, . . . , T

Level 3 : log na,t0 |σ2
n ∼ Normal

(
log n∗a,t0 , σ

2
n

)
, a = 0, 5, . . . , A+ (4)

log fa,t |σ2
f ∼


Normal

(
log f ∗a,t, σ

2
f

)
, a = a

[fert]
L , . . . , a

[fert]
U

t = t0, t0 + 5, . . . , T

undefined, otherwise

(5)

logit sa,t |σ2
s ∼ Normal

(
logit s∗a,t, σ

2
s

)
, a = 0, 5, . . . , A++ (6)

t = t0, t0 + 5, . . . T

ga,t |σ2
g ∼ Normal

(
g∗a,t, σ

2
g

)
, a = 0, 5, . . . , A+, (7)

t = t0, t0 + 5, . . . , T

Level 4 : σ2
v ∼ InvGamma(αv, βv), v ∈ {n, f, s, g}. (8)

For 0 < x < 1, logit x ≡ log(x/(1− x)).

In standard Bayesian terms, expressions (4)–(7) could be viewed as informative
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priors for θ while (2) is the likelihood of n∗a,t |θ. Inference will be based on the joint

posterior distribution of these parameters, p(θ | D). We also explicitly impose the

restriction that all population counts be positive. Therefore, the joint prior on all

parameters at time t, p(nt0 ,f t, st, gt), is multiplied by

I
(
M(nt,f t, st, gt) > 0

)
≡

{
1; na,t+5 ≥ 0, a = 0, . . . , A+

0 otherwise.
(9)

The quantities involved, and their dependence relations, are summarized in Fig-

ure 1.

3.2.2. Determining the Hyperparameters

To determine plausible values of αv and βv, v ∈ {n, f, s, g}, we view the σ2
v as

representing the measurements of the respective demographic parameters. Although

prior knowledge about these accuracies is unlikely to be exact, we expect that informa-

tive estimates can be derived from experts’ knowledge of the data sources. Methods

for eliciting prior information from experts are numerous (e.g., O’Hagan et al. 2006).

Here, we use a straightforward method based on the mean absolute error (MAE) of

the transformed measurements.

Taking fertility rate as an example, note that (5) implies MAE(log fa,t |σ2
f ) ≡

E(| log fa,t − log f ∗a,t| |σ2
f ) = σf

√
2/π. The prior distribution for σ2

f can be spec-

ified by choosing quantiles for MAE(log fa,t |σ2
f ). Suppose expert opinion is that

MAE(log fa,t |σ2
f ) is close to 0.1, but could be as high as 0.5. This suggests setting

median(σ2
f ) = (0.1)2π/2 ≈ 0.0151 and the 0.975 quantile to 0.5. To find an inverse

gamma distribution with these quantiles, we fixed αf at a range of values between

0.3 and 6 and chose βf such that median(MAE(log fa,t |σ2
f )) = 0.1. The parameter

αf was then chosen such that the 0.95 quantile of MAE(log fa,t |σ2
f ) was about 0.5.

Since demographers are more used to thinking about untransformed fertility rates,
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it is useful to consider what specifying MAE(log fa,t |σ2
f ) means on the original scale.

On the log scale, MAE approximates mean absolute relative error (MARE) on the

original scale where MARE(fa,t |σ2
f ) ≡ E(|fa,t − f ∗a,t| |σ2

f )/f ∗a,t. This approximation

is good for the MAE values used here. The MARE has been used previously by

demographers as a way of quantifying measurement accuracy (Keilman 1998).

The population count variance, σ2
n, is also modeled on the log scale and αn, βn

are found in the same way as αf and βf . Survival is measured on the logit scale, but

this should not be too difficult to interpret. Note that E(| logit s̄a,t − logit s̄∗a,t| |σ2
s) =

E(| logit sa,t− logit s∗a,t| |σ2
s) where s̄a,t = 1−sa,t. In practice, the s̄a,t are close to zero,

so that s̄a,t ≈ s̄a,t/(1 − s̄a,t). Thus specifying the MAE of the log-odds of survival is

not that different from specifying it for the log probability of death. For the migration

parameter, which is a proportion, we specify the MAE directly.

3.2.3. Summary of Model

We model the transformed vital and migration rates as unimodal distributions

centered at the relevant measurements which serve as fixed prior means. This is

equivalent to the assumption that the measurements are median-unbiased but noisy,

which might require preprocessing of the vital rate data. Techniques for estimating,

and hence removing, the bias in vital rate estimates are probably best developed

separately as they will depend on data collection methods and other data-specific

factors. For example, building on work by Hill et al. (1999) and UNICEF et al.

(2007), Alkema et al. (2008) developed a technique for removing the bias in TFR

measurements.

The use of informative priors for both the mean and the variance parameters in

(4)–(7) is necessary because the model will be technically over-parameterized and

hence under-identified in most practical applications.
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3.3. Estimation

Samples from the joint posterior can be drawn using a Markov chain Monte Carlo

(MCMC) sampler (Metropolis et al. 1953, Hastings 1970, Geman and Geman 1984).

Without the restriction in (9), the full conditional posterior distributions for the

variance hyperparameters would be the usual conjugate inverse gamma distributions.

With the restriction, the conjugate forms are not exactly correct but will probably

be very close to the true full conditionals. Therefore, to update these parameters we

use the conjugate full conditional distributions as proposal densities in Metropolis-

Hastings (M-H) steps. The posterior densities of the remaining parameters are not

easy to express analytically since each vital rate enters the likelihood through the

map M . Therefore, these parameters are updated using M-H steps with univariate

normal proposal densities, with variances tuned by the method of Raftery and Lewis

(1996). We will use the term “iteration” to refer to one complete sweep through all

age-time specific parameters and variance parameters.

The R environment for statistical computing (R Development Core Team 2010),

together with the CODA package (Plummer et al. 2006, 2010) were used for all data

manipulation, model estimation and output analysis.

4. SIMULATION STUDY

Simulation was used to investigate whether the true vital rates, migration propor-

tions and population counts could be recovered from noisy data under the model. To

this end, we used a small, synthetic population for which the true values of all key pa-

rameters were known. The estimation procedure was applied to noisy measurements

of the true parameter values and central posterior marginal probability intervals were

compared to the truth. Calibration of the intervals was assessed by replication.
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4.1. Method

4.1.1. Inputs

The true vital and migration rates assumed to have prevailed in this population

are shown in Table 1. This is not intended to be a realistic model of a human

population; datasets typically encountered in human demography have up to 18 age

categories and any number of time periods. However, we believe that this reduced

population model is of sufficient size and complexity to explore the characteristics of

the statistical model while not being too computationally expensive. The TFR and

LEB were kept constant at 0.7 births per woman per year and 15.61 years, respectively,

for the duration of the reconstruction. A varying pattern of migration was chosen

which consisted of net out-migration in the first half of the reconstruction period

followed by net in-migration in the second half. The magnitude of the flows was quite

volatile, varying from 13 percent to 26 percent of the receiving population. Moreover,

migration in both directions was concentrated in the two middle age groups.

The true population counts are shown in Table 2. Those for 1960 were chosen to

represent a young population. Those for the subsequent time periods were derived

by applying the CCMPP to the 1960 population using the vital rate and migration

parameters in Table 1. Therefore, the underlying true population dynamics over the

reconstruction period were completely and deterministically defined by (1).

4.1.2. Study Design

The coverage of central marginal posterior probability intervals under the model

was estimated by the following experiment. For j = 1, . . . , J :

1. Randomly sample σ
2[j]
v , v = n, f, s, g from (8).

2. Generate measurements f
∗[j]
a,t , g

∗[j]
a,t for a = 0, . . . , 15+, t = 1960, . . . , 1975, s

∗[j]
a,t ,
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Table 1. True Vital Rates Used in the Simulation Study.

Time period
a [1960, 1965) [1965, 1970) [1970, 1975) [1975, 1980)

Fertility Rate
0 0.00 0.00 0.00 0.00
5 0.40 0.40 0.40 0.40

10 0.30 0.30 0.30 0.30
15 0.00 0.00 0.00 0.00

Survival Proportion
0 0.90 0.90 0.90 0.90
5 0.95 0.95 0.95 0.95

10 0.85 0.85 0.85 0.85
15 0.80 0.80 0.80 0.80

20+ 0.10 0.10 0.10 0.10

Migration Proportion
0 -0.03 -0.05 0.03 0.05
5 -0.05 -0.10 0.05 0.10

10 -0.06 -0.11 0.06 0.11
15 -0.01 -0.01 0.01 0.01

Table 2. True Population Counts Used in Simulation Study.

Year
a 1960 1965 1970 1975 1980
0 7500 8482 9453 11436 14504
5 6000 6886 7512 9280 11600

10 4000 4862 5293 6690 8651
15 3000 3404 3998 4762 6149
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Table 3. Hyperparameter Details. Values of the σ2v and selected implied quantiles of the
mean absolute error (MAE) of the respective demographic parameters, used in the sim-
ulation study and the application to Burkina Faso. For v ∈ {n, f}, MAE(log va,t |σ2v) =
σv
√

2/π; MAE(logit sa,t |σ2s) = σs
√

2/π; MAE(ga,t |σ2g) = σg
√

2/π.

MAE quantiles
α β 0.025 0.25 0.5 0.75 0.975
1 0.0109 0.0433 0.0707 0.1 0.1552 0.5232
1 0.0436 0.0867 0.1414 0.2 0.3104 1.0465

for a = 0, . . . , 20+ t = 1960, . . . , 1975, and n
∗[j]
a,t=t0 for a = 0, . . . , 15+ from the

distributions in (4)–(7).

3. Generate measurements n
∗[j]
a,t for a = 0, . . . , 15+ and t in t = 1965, . . . , 1975

from (2).

4. Check that (9) is satisfied by the measurements; if not return to step 1.

5. Draw a large MCMC sample from the joint posterior and find the 0.025, 0.5

and 0.975 quantiles of the marginal distribution of each parameter.

The estimated coverage is then the proportion of the J central posterior marginal

intervals containing the known, true value for each parameter.

The hyperparameters of the inverse gamma distributions were determined as de-

scribed in Section 3.2.2. The median MAEs for log fertility rate, logit survival and

log population counts were set to 0.1 with 0.975 quantiles of approximately 0.5. The

same figures for migration were set to 0.2 and approximately 1, respectively. The

resulting values of αv, βv and MAE quantiles are shown in Table 3.

We set J = 200 and applied the estimation method described in Section 3.3.

Initial values for the population counts, vital rates and migration proportions were

set to the measured values. Initial values for the variances were arbitrarily set to five

as this appeared to have a negligible effect on the final results. Approximately 9000
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Table 4. Estimated Coverage Probabilities of 95 Percent Posterior Intervals for all
Demographic Parameters of Interest.

years ages population fertility survival migration
1960 [0, 5) 0.90

[5, 10) 0.94
[10, 15) 0.89
[15, 20) 0.88

[1960, 1965) [0, 5) 0.94 0.94
[5, 10) 0.93 0.97 0.94
[10, 15) 0.95 0.95 0.93
20+ 0.94

[1965, 1970) [0, 5) 0.93 0.92
[5, 10) 0.94 0.93 0.94
[10, 15) 0.96 0.92 0.96
20+ 0.94

[1970, 1975) [0, 5) 0.92 0.98
[5, 10) 0.92 0.97 0.94
[10, 15) 0.92 0.96 0.95
20+ 0.94

[1975, 1980) [0, 5) 0.93 0.94
[5, 10) 0.95 0.93 0.96
[10, 15) 0.96 0.94 0.97
20+ 0.95

iterations, with a burn in of 100, were judged sufficient for accurate inference.

4.2. Results and Discussion

Point estimates of the coverage of the marginal 0.95 posterior probability intervals

are shown in Table 4. These are all close to 0.95.

In practical applications with real data sets, where the true parameter values are

unknown, interest will be in interval estimates for the demographic parameters. These

should be based on the joint posterior distribution. For illustration, we have plotted

central marginal credible intervals for a selection of parameters and transformations

that might be of interest based on the MCMC sample from a single replicate of the

simulation study. For comparison, we have also plotted the true parameter values

used throughout the simulation and the noisy measurements generated under the
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model.

Marginal central credible intervals can be plotted for age-specific parameters as

has been done for age-specific fertility rates in Figure 2a. Credible intervals for any

function of the age-specific parameters can be obtained immediately by transforming

each vector of age-specific values in the MCMC sample and computing the sample

quantiles. We show TFR in Figure 2b. This is obtained from the age-specific rates by

summing them and multiplying by the width of the sub-intervals of the reconstruction

period, which is five in this case. In a stationary population (Preston et al. 2001)

subject to the survival proportions, s0,t, . . . , sA+,t, sA++,t,

LEB = 5

A+∑
a=0

a∏
i=0

si,t +

(
A+∏
i=0

si,t

)(
sA++,t/(1− sA++,t)

)
.

We plot this in Figure 2c. The total net number of migrants (Figure 2d) can be

calculated by solving (1) for gt and summing over age.

5. RECONSTRUCTION OF THE

POPULATION OF BURKINA FASO, 1960–2000

We now illustrate the method by reconstructing the population of Burkina Faso

from 1960 to 2000.

5.1. Data

5.1.1. Population Counts

Population count measurements in exact years 1960, 1975, 1985, 1995 and 2005

by sex were taken from United Nations (2009) which are based on a 1960–1961 demo-

graphic survey and censuses in 1975, 1985, 1996 and 2006. The United Nations (UN)

figures are preferred over the raw census counts because important adjustments were

made for underenumeration. This form of bias is more common in certain age-groups
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Figure 2. Ninety-five Percent Central Credible Intervals for Selected Parameters From
a Single Replication of the Simulation Study. (a) Age specific fertility rate. (b) Total
fertility rate. (c) Life expectancy at birth in the stable equivalent population. (d) Total
net migration.
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and efforts to reduce it are based on post-censal surveys.

5.1.2. Fertility

Estimates of age-specific fertility rates for Burkina Faso based on data from recent

births (in the preceding 12 months) and retrospective birth histories were obtained

from various sources. The recent births data came from the 1960 and 1991 demo-

graphic surveys, as well as from the 1976 census post-enumeration survey and the

1985, 1996 and 2006 censuses themselves. The retrospective birth histories were taken

from the 1992–93, 1998–99 and 2003 Demographic and Health Surveys (DHSs) and

refer to the preceding 20 years. In addition, for each of these data sources, adjusted

fertility rates for the most recent period were also estimated using women’s lifetime

parity information and the Brass-Feeney P/F ratio method (Brass 1964, Feeney 1996;

see also United Nations 1983, Ch. II, Sect. B).

Alkema et al. (2008) studied estimates of TFR for seven West African countries,

including Burkina Faso, and found noticeable disagreement among estimates from the

various data sources. This suggested the need to account for potential bias and to

estimate the variability of the estimates. Therefore, our prior median estimates of age-

specific fertility were based on Alkema et al.’s (2008) median bias-adjusted estimates

of TFRs for Burkina Faso for the five-year increments between, and inclusive of, the

years 1962–1997. These were chosen as they are the mid-points of the five-year sub-

intervals [1960, 1965), [1965, 1970), . . . , [1995, 2000) which span the reconstruction

period. Since the latest estimate given by Alkema et al. (2008) is for 2001, this was

used as the estimate for the period [2000, 2005). These were then disaggregated into

age-specific rates by applying an age-specific fertility pattern. These patterns, which

sum to one, indicate the share of fertility attributable to each age-group. Therefore,

the final age-specific fertility rates are the product of TFR and the age pattern. The
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patterns were determined through a process we now describe.

Since we require average fertility rates for the sub-intervals [1960, 1965), . . . ,

[2000, 2005), we grouped the available estimates by the sub-interval into which they

fell. Data of this kind are often summarized by a single series of age-specific values

per sub-interval using a relational model or a smoothing technique. Relational models

take a fixed age-pattern, often derived from a combination of data collected in similar

populations and theory about the underlying social and biological processes, and

adjust it to fit the observed data. The method of Coale and Trussell (1974), updated

by Xie (1990) and Xie and Pimentel (1992), is an example. However, the validity of

these methods rests, in part, on an appropriate choice of model age pattern. Data-

driven smoothing techniques avoid this problem, albeit at the cost of not modeling the

underlying mechanisms. Since we are not primarily concerned with such mechanisms,

we used loess (Cleveland 1979, Cleveland, Grosse, and Shyu 1992) to smooth the age-

specific fertility patterns within five-year sub-interval. The loess method performs

a series of locally weighted regressions and is implemented in the R function with

the same name. Smoothing within five-year sub-interval (Figure 3) yielded trends

that were also sensible, a priori, when viewed by five-year age group (Figure 4). No

age-pattern data were available for the period [1965,1970). To generate a prior for

this period, we assumed that the [1960,1965) held over this period but used Alkema

et al.’s (2008) median TFR estimate for 1967.

5.1.3. Mortality

Abridged life tables for Burkina Faso can be computed from data on recent house-

hold deaths in years for which data is available. However, potential biases arise due

to the omission of deaths, recall period errors, age heaping and age exaggeration by

survey respondents. The approach favored by the UN in this context has been to use
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Figure 3. Data Points for the Age-Specific Fertility Patterns of Burkina Faso Women,
1960–2000, Grouped By on Five-year Sub-Interval. The lines are the within-time loess
smooths.
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Figure 4. Data Points for the Age-Specific Fertility Patterns of Burkina Faso Women,
1960–2000, Grouped by Five-year Age Group. The lines are the within-time loess
smooths, the same as those plotted in Figure 3.
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a Brass two-parameter relational logit model (Brass 1971), with the Timæus Sahelian

standard mortality pattern (Timæus 1999), to estimate a complete set of abridged

life tables for each five-year sub-interval of the reconstruction period. Brass’s method

treats the logit of the life table for the population of interest as a linear function of

the logit of an appropriately selected standard life table. The intercept and slope are

estimated using ordinary least squares (OLS).

Brass’s model was fitted to robust estimates of under-five mortality and adjusted

estimates of adult mortality. Under-five mortality estimates were based on three

types of data: (i) recent household deaths from the 1960–1961 and 1991 national

demographic surveys and the 1976, 1985, 1996 and 2006 censuses; (ii) births and

deaths to under-fives calculated from maternity-history data from the 1992–1993,

1998–1999 and 2003 DHSs; and (iii) data on children ever-born and surviving classified

by age of mother (and the South model of the Coale-Demeny Model Life Tables) from

the data sources in (ii) as well as from UNICEF’s Multiple Indicator Cluster Survey—

Round 3 conducted in 2006. Estimates of adult mortality were based on four sources:

(i) recent household deaths data (unadjusted and adjusted for underregistration using

the growth-balance and synthetic-extinct generation methods) from the 1960–1961

and 1991 national demographic surveys and the 1976, 1985, 1996 and 2006 censuses;

(ii) parental orphanhood from the 1993 and 2003 DHSs and the 2006 census; (iii)

sibling deaths from the 1998–1999 and 2003 DHSs; and (iv) intercensal survivorship

from successive census age distributions (smoothed and not smoothed) for the periods

1976–1985, 1985–1996 and 1996–2006.

The usual approach to obtaining age-specific survival proportions from the result-

ing life-tables is to assume the relationships s0,t = L0,t/(5 · l0,t), sa,t = La,t/La−5,t

for a = 5, . . . , 80 and s85+,t =
∑∞

a=85 La,t/
∑∞

a=80 La,t which hold in the stationary
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equivalent population (Preston et al. 2001). La,t is the number of person years lived

between years t and t + 5 by those with ages in [a, a + 5) in year t and l0,t is the

radix of the life table or annual number of births in the stable equivalent population.

While we need survival ratios for the CCMPP, demographers more often deal with

the mortality rates, ma,t ≡ da,t/La,t, where da,t is the number of deaths to the age

group [a, a + 5) in the life table operating during the sub-interval [t, t + 5). In the

stationary equivalent population, da,t = sa,tna,t − na,t so that the sa,t can be easily

re-expressed as mortality rates.

The stationary equivalent device is used frequently in demography. In stationary

populations the birth rate and age-specific death rates are constant over time and

the population is closed to migration. However, we emphasize that stationary pop-

ulation conditions are not assumed to hold in the estimation process. The device is

invoked only to derive the measurements, s∗a,t, and as a way to re-express the survival

proportions in a form more familiar to demographers.

5.1.4. Migration

Estimates of migration for many countries, even those with well-resourced official

statistics systems, are often unavailable, unreliable or available only at the whole pop-

ulation level. Nevertheless, some estimates of migrant flows for Burkina Faso by broad

age-group and sex are given by Condé (1980) for the period 1960–1975. In addition,

whole-population estimates for 1960–2005 are available from United Nations (2009)

and United States Census Bureau (2009) which indicate sustained net out-migration

over the period 1960–2000 followed by a brief reversal from 2000–2005. Condé (1980)

implies that the proportion of migration due to females is low. Therefore, we made

the a priori assumptions that migration was concentrated among those in the age

range 15–50 and that there was net out-migration for the period 1960–2000 but net
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in-migration from 2000–2005. The mean magnitude for females was estimated at ±7

percent based on Condé’s (1980) figures.

5.2. Results

The parameters αv and βv, v ∈ {n, f, s, g}, were set to the same values as in the

simulation study (Table 3); the MAEs given there were based on expert opinions

provided by UNPD analysts for the case of Burkina Faso. Start values were also

chosen in the same way as for the simulation study. Chains of length 15,000 with a

burn-in of 500 were found to be sufficient.

Central marginal 95% credible intervals and posterior medians for the population

counts and age-specific fertility rates are shown in Figures 5 and 6 for illustration.

Similar plots can be constructed for age specific mortality rates, migration rates and

population counts in the years following t0. In Bayesian terminology, the latter are

the “prior predictive” distributions of nt.

Central marginal credible intervals for (a) TFR, (b) total net number of migrants,

(c) probability of death before age 5 (5q0) and (d) LEB are shown in Figure 7. The

interval widths for TFR over the reconstruction period are consistently equivalent to

about plus or minus half a child. There was a decline in TFR from 7.9–7.0 children to

6.8–6.0 children per woman over the period 1980–2005. There was a strong upward

trend in life expectancy from 33.5–37.1 to 50.9–53.8 years is implied over the period

1960–2005. While the posterior medians for the total net number of migrants suggest

a change from a net loss to a net gain between 1995 and 2000, all 0.95 credible

intervals contain zero. Our interpretation of this result is that there is not enough

information on migration to clearly indicate a trend.
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Figure 5. Ninety-five Percent Central Marginal Posterior Intervals for Initial Age-
specific Population Counts for the Female popUlation of Burkina Faso, 1960. Also
shown are the measured values.

6. DISCUSSION

We have described a method for reconstructing past populations by age and sex

which is designed to work with the type of data commonly collected in modern demo-

graphic surveys and censuses. Population dynamics are modeled by the well-known

CCMPP and measurement error is accounted for in a coherent, fully probabilistic

manner through a Bayesian hierarchical model. Inference is based on the joint pos-

terior distribution of all parameters.

Lee (1971, 1974) and Oeppen (1993) proposed deterministic methods of population

reconstruction. We have assumed a deterministic model only for the population

dynamics. That is, given the true vital and migration rates, the evolution of the

population is modeled deterministically. In contrast, Bertino and Sonnino (2003) give

a method wherein the population dynamics are stochastic and the vital rates function
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Figure 6. Ninety-five Percent Central Marginal Posterior Intervals for Age-specific
Fertility Rates for the Female Population of Burkina Faso, 1960–2005. Also shown are
the measured values.
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Figure 7. Ninety-five Percent Central Credible Intervals for Selected Age-summarized
Parameters for the Female Population of Burkina Faso, 1960–2005. (a) Total Fertility
Rate. (b) Total Net Migration. (c) Child Mortality (5q0) in the Stable Equivalent
Population. (d) Life Expectancy at Birth in the Stable Equivalent Population.
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as mean parameters. We agree with Cohen (2006) and expect that, in our applications

at least, variation due to measurement error will overwhelm any additional variation

arising from a stochastic population dynamics model.

Daponte, Kadane, and Wolfson (1997) use an approach similar to ours to con-

struct a counterfactual history of the Iraqi Kurdish population between 1977 and

1990. They, too, represented errors in the measurement of demographic parameters

as the standard deviations of probability distributions. However, they used a low

dimensional parameterization of mortality and fixed the age patterns of fertility.

Girosi and King (2008) use Bayesian models with covariates to forecast mortality.

Our aim was not to produce forecasts, nor model dependence on covariates. Instead,

we have shown how information only about the parameters themselves can be used

to produce probabilistic distributions summarizing uncertainty due to measurement

error. Where useful covariate information is available, we suggest that this be applied

in a preprocessing stage, for example to remove the bias from the age-specific estimates

which our model takes as input and assumes are median-unbiased. Our method would

then be used to ensure that final estimates of multiple parameters are coherent in that

they satisfy the basic demographic accounting relationships.

In previous work, migration has been handled in different ways. Lee’s inverse

projection method estimates it as a residual if censuses are available at intermediate

years in the reconstruction interval. Alho (1992) added it as extra error in measuring

survival. Here, migration is treated explicitly and age-time specific estimates are

available as for the other parameters.

Similar models have been used extensively in demographic studies of marine life

and complex population dynamics models have been developed by fisheries researchers

(e.g., Quinn and Deriso 1999). As is the case in human demography, multiple sources
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of data informing the same demographic parameters often exist. This led Raftery,

Givens, and Zeh (1992, 1995), Givens, Raftery, and Zeh (1993) and McAllister et al.

(1994) to develop Bayesian approaches to synthesizing these in a coherent manner.

A large body of work also exists on the dynamics of land animal populations. As

with fisheries research, data commonly come from mark-recapture or mark-recovery

studies, but radio-telemetry and age-at-harvest data are also common; Seber (1982)

is a classic reference and more recent reviews are Pollock (1991) and Schwarz and

Seber (1999). Bayesian approaches to the analysis of this type of data were suggested

at least as early as Gaskell and George (1972) but Vounatsou and Smith (1995) were

among the first to take advantage of modern computers and MCMC methods to

simultaneously estimate several parameters. Subsequently, a large body of literature

developed; Brooks, Catchpole, and Morgan (2000a), Brooks et al. (2002) provided

reviews while Barry et al. (2003), Conn et al. (2008) and Corkrey et al. (2008) are

just a few examples of more recent studies.

An issue given some consideration in this literature (and the demography litera-

ture; see Lee 1985, 1993) is the fact that the population dynamics models are typically

over-parameterized. This causes problems for likelihood based inference because the

likelihood surface then contains ridges (e.g., Catchpole, Kgosi, and Morgan 2001).

Nevertheless, in one of the models they studied, Brooks et al. (2000b) show that a

Bayesian approach can yield sensible estimates.

Naturally, there are ways in which our framework can be refined. An extension

to two-sex populations is an obvious example. We expect this to be straightforward

conceptually, although technical issues associated with estimation may arise. With

two sexes, we might also attempt to estimate the SRB parameter.

We made the simplifying assumption of constant variance across age and time for
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each demographic parameter on the log scale. Allowing uncertainty estimates to vary

would allow for the fact that more is typically known about infant and child mortality

than old-age mortality, for example. However, the benefits of this extension would

have to be weighed against the expense of having to estimate more parameters. This

might be beneficial if estimation is done simultaneously for groups of countries. If the

groups are chosen to be demographically similar, it might be realistic to set some of

the variance parameters constant across countries but allow for variation over time

or age.

Alternatively, a small number of variance parameters could be chosen representing

different degrees of uncertainty, for example, σ2
SML < σ2

MED < σ2
LGE < σ2

XL. These

would then be assigned to the age-specific parameters following the same reasoning

we have advocated above. An advantage is that the number of parameters can be

determined by the analyst as opposed being dependent on the number of age groups

or sub-intervals.
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