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Abstract. The rapid increase in human longevity has raised important questions about what 

implications this development may have for the variability of age at death. Earlier studies have 

reported evidence of a historical trend towards mortality compression. However, the period life 

table model, commonly used to address mortality compression, produces an artificially 

compressed picture of mortality as a built-in feature of the model. We base our study on an 

examination of the durations of exposure, in years of age, of birth cohorts and period life tables 

to selected levels of mortality observed at old age. We also address the problem in a more 

conventional fashion, by examining the distribution of ages at death above and below the mode. 

Overall, mortality has been decompressing since the 1960s. This finding contradicts most 

previously reported results. The decompression of old-age mortality may further indicate good 

prospects for ever-decreasing mortality. In the future, deaths may not be concentrated within a 

narrow age interval, but will instead become more dispersed, though at ever later ages on 

average.
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Introduction 

Human longevity continues to increase in developed countries. In countries that currently have 

low mortality, the average lifespan has increased from the pre-modern level of about 35 years, to 

about 75 years for the currently old cohorts. This increase is expected to continue: the United 

Nations (UN Population Division 2010) has forecast that period life expectancy at birth will 

increase, though at a gradually declining pace, to about 85 years by 2050 in low-mortality 

countries.  

The rapid rise in human longevity has raised important questions about what implications this 

trend may have for the variability of age at death. Fries (1980), based on the assumption that 

there is a fixed upper limit to the human lifespan, argued that the decline in mortality may lead to 

a rectangularization of morbidity and survival curves; i.e., a compression of illness and death to 

the oldest age. This view is supported by the age pattern of mortality decline, which is 

characterized by a more rapid decline in mortality at young ages, and almost no change at the 

oldest-old ages (with only a few exceptions, of which Japan is the most notable).  

Later studies, while questioning the strict link between mortality compression and the existence 

of an upper limit to the lifespan (Carnes et al. 1996; Olshansky et al. 2002), and even the very 

process of mortality decline (as Wilmoth and Horiuchi, 1999, put it: “the average length of life 

… is generally independent of its variability”), provided more evidence of a historical trend 

towards mortality compression, which may have slowed down or even stopped in recent decades 

in developed countries (Wilmoth and Horiuchi 1999; Kannisto 2000; Canudas-Romo 2008; 

Thatcher et al. 2010; Engelman et al. 2010). Some authors (e.g., Myers and Manton 1984) have 
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argued against the premise that mortality compression is occurring, but their evidence was based 

on a methodology with a built-in tendency towards decompression (see below). 

The prospect of a compression of mortality and morbidity would have had obvious implications 

for public health policies. Mortality compression was argued to be relevant for health-related 

behavior (Wilmoth and Horiuchi 1999). Evidence of a compression, even of a stalled one, is 

important in helping us to better understand the future of aging and senescence. Even though the 

direct link between mortality compression and the existence of an upper limit to the lifespan was 

discarded in the literature, the compression of mortality may still be associated with increasing 

efforts to further extend life expectancy. The shifting mortality hypothesis, which is supported by 

the stalling of mortality compression in developed countries during recent decades (Canudas-

Romo 2008), was associated with the inability to slow the pace of deterioration with age, at least 

so far (Vaupel 2010). Understanding the developments in mortality compression is also 

important for modeling mortality and formulating assumptions about future mortality dynamics 

(Tuljapurkar and Edwards 2011). 

Despite numerous advances, however, the question of which methodology is most suitable for 

studying mortality compression remains unresolved. Existing methods are affected by the in-

built biases of the period life table model and age censoring (see a critical review of 

methodological approaches in the next section). Building on an earlier analysis of the limitations 

of the conventional period life table model (Ediev 2011), we propose a new approach to studying 

mortality compression. Using extensive mortality data and a new, cohort-oriented methodology, 

we show that mortality compression at old ages was not a universal trend in the past in low-

mortality countries: the whole period since the 1960s—i.e., the period of time when the greatest 

reductions in old-age mortality have occurred—has been characterized by mortality 
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decompression. Meanwhile, the period life tables in low-mortality countries have been 

characterized by mortality compression. 

In the following two sections, we briefly review existing methodological approaches, reiterate 

some concerns about the limitations of the conventional period life table model in case of 

dynamic mortality, and show why the period life table model tends to artificially compress the 

mortality pattern when mortality is on the decline. This explains our reasons for introducing a 

new methodology based on a cohort approach, which we present in Section 3. The empirical 

evidence is provided in Section 4. We present more traditional indicators of compression of the 

distribution of ages at death in relation to the modal age at death in Section 5, and then offer 

some conclusions. The appendices contain the formal relations that support the main findings. 

 

1. Literature review on the methodology of studying mortality compression 

In this section, we briefly review key methodological approaches to studying mortality 

compression and account for the limitations of existing methods. The review is, for the most part, 

organized in chronological order. 

Entropy, the Keyfitz H (Keyfitz 1977, Mitra 1978, Demetrius 1978, 1979, see also Goldman and 

Lord, 1986, and the following discussion with Mitra, 1986, in this journal), was an early index of 

variation in age at death. Along with variance, entropy is a common statistical measure of the 

uncertainty of a probability distribution; however, the two measures may differ in their 

judgments about the uncertainty and its change, and there may be no clear-cut basis for 
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preferring one measure over another (e.g., Ebragimi et al. 1999) 1. Although it was used in some 

studies (e.g., Nagnur 1986, Nusselder and Mackenbach 1996, Wilmoth and Horiuchi 1999), its 

usage was limited not least by a clearer interpretation of the alternative: the variance in the age at 

death. A particular drawback of using entropy in our study is that it may not be computed for 

birth cohorts before the completion of their lifespan. 

Fries (1980) – whose work played a key role in popularizing the topics of mortality and 

morbidity compression – as well as earlier researchers cited by him, based their research on a 

visual inspection of period survival curves, as well as on arguments in favor of the existence of 

fixed limits to the human lifespan. The latter arguments, while implying that a mortality 

compression must accompany the approach of lifespan limits, may be discarded in view of recent 

and more comprehensive data (e.g., Oeppen and Vaupel 2002, Vaupel 2010).  

Myers and Manton (1984) challenged the very existence of mortality compression, 

examining a more complete life table for the U.S. population and computing standard deviations 

                                                           

1 Confusion regarding the statistical entropy of the probability distribution has contributed to some contradictory 
interpretations of entropy in demography. Strictly speaking, the entropy used in demography, 
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of ages of death at ages 60 and over. Those indicators were, however, criticized as being prone to 

a built-in decompression of mortality when life expectancy is growing and the distribution of 

deaths is shifted to older ages (Kannisto 2001). In a schematic model where deaths are uniformly 

distributed between some young age 60<a  and the maximum age 60>X , the standard 

deviation of ages at death above age 60, 
32

60
60

−= X
S , would be proportional to the remaining 

life expectancy at age 60, 
2

60
60

−= X
e . It would not show mortality compression even in the 

Fries’ scenario, when the life expectancy at birth increases due to increasing a , but the limit to 

the lifespan X  is fixed; 60S  would show decompression when the whole distribution of deaths 

shifts to older ages without compressing or decompressing (when both a  and X  increase at the 

same speed). Results for more general mortality changes are less straightforward (see Appendix 

A), but also support the schematic model above: the standard deviation computed after left-

censoring the distribution of deaths at a fixed age is usually biased towards showing 

decompression. In the context of our study, usage of the standard deviation of age at death is also 

limited due to an inability to calculate the index for birth cohorts with incomplete life histories. 

Wilmoth and Horiuchi (1999) stressed the importance of objective indices of compression, and 

considered 10 such indices. They chose as their favorite the Interquartile Range of the 

distribution of ages at death (IQR) for its convenience and good correlation with other measures. 

They reported a historical compression of mortality attributable to declining risks of death at 

young ages, but also, to a lesser extent, at ages up to age 75. Finding Fries’s prediction of a fixed 

limiting mortality pattern somewhat inconsistent, Wilmoth and Horiuchi also argued against 

“derectangularization” (Gavrilov and Gavrilova 1991), while arguing in favor of “a continuing 

pattern of stability in the variance of ages at death, as the entire distribution shifts upward.” 
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However, the results based on period life table distributions of ages at death may be biased 

towards showing mortality compression, an issue we will discuss in more detail in the next 

section. When it comes to the cohort data, it would only be possible to compute the IQR for 

cohorts for whom the first three quartiles of the deaths have been observed. 

Shkolnikov et al. (2003) used the Gini coefficient to measure the mortality compression (the 

coefficient was also listed, but not used, in Wilmoth and Horiuchi 1999). Shkolnikov et al. 

(2011) showed a close correlation between the Gini coefficient and the losses of expected 

lifetime, which, in turn, is equivalent to entropy (Mitra 1978, Vaupel 1986, Goldman and Lord 

1986). As in other indices based on complete distributions of ages at death, the Gini coefficient 

may be computed for only a limited number of birth cohorts for whom such data exist. 

Kannisto (2000, 2001) introduced two approaches to measuring mortality compression. His C-

family of shortest age intervals covering C percent of the deaths is an extension of Wilmoth and 

Horiuchi’s IQR. In his second approach, he followed Lexis’ (1877) advice to distinguish 

between natural and premature deaths, with the latter deaths being responsible for most of the 

historical mortality compression. Since premature deaths are, conceptually, a phenomenon of 

transient effects that must cease once they are reduced to a possible minimum, Kannisto 

advocated measuring mortality compression by focusing on “natural” deaths. He also pointed, 

without providing any formal proof, to the presence of bias in compression indicators, like those 

used by Myers and Manton (1984) (and, more recently, by Engelman et al. 2010), which are 

based on studying age intervals left-censored at a fixed old age. Assuming the modal age at 

death, M, as the center of the distribution of “natural” deaths, Kannisto instead used the mode to 

left-censor the distribution of deaths in order to eliminate the effects of the premature deaths and 

the shifts in the distribution of deaths. Using the standard deviation from the mode of ages at 
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death above the mode, ( )+MSD , he showed that mortality compression accompanied the 

continuing increase in life expectancy in 13 countries with good data. (He has also demonstrated 

empirically that ( )+MSD , IQR, and C-family indicators have all changed in a similar direction.) 

The Lexis-Kannisto approach may be questioned in different ways: the concepts of premature 

and natural deaths may change over time; the distribution of deaths above the mode may deviate 

from the normal distribution; and the method may not be applied to birth cohorts who are not yet 

extinct, i.e., to any of the currently observed cohorts. Nonetheless, the approach has found many 

supporters and followers in the literature, and provides an interesting perspective on mortality 

dynamics. 

Cheung et al. (2005) proposed distinguishing between three dimensions of change in the shape of 

the survival curve: horizontalization of the left-hand part of the curve due to declining deaths at 

young ages, verticalization of the curve around the modal age at death, and longevity extension 

corresponding to how far the highest life durations may exceed the modal age at death. Of these 

dimensions, the second one is most relevant to the mortality compression. Cheung and co-

authors used the prolate ndex, orPI , developed by Eakin and Witten (1995) to measure the 

degree of verticalization. PI  is the angle of the line connecting the points of maximum 

acceleration and deceleration in attrition around the modal age at death. It was also included in 

the set of indictors developed by Wilmoth and Horiuchi (1999). Based on data from Hong Kong, 

Cheung and co-authors demonstrated continuous mortality compression in 1976-2001 for both 

males and females. In more recent works, Cheung and Robine (2007) and Thatcher et al. (2010) 

turned to Kannisto’s indicator ( )+MSD , and presented evidence for mortality compression 

above the mode in recent data in six countries.  
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Edwards and Tuljapurkar (2005), Tuljapurkar and Edwards (2011), and Engelman et al. (2010) 

used an approach similar to that of Myers and Manton, considering standard deviations xS  of 

ages at death above selected fixed ages x. (Edwards and Tuljapurkar used 10S  and Engelman et 

al. considered a variety of left-censoring ages.) From their analysis, Edwards and Tuljapurkar 

drew important conclusions about socioeconomic inequality and racial differences in mortality 

compression, yet their conclusion about the stalling of mortality compression since 1960 was, in 

part, driven by the bias of 10S  (we consider the bias in Appendix A). The same applies to the 

conclusions of Engleman et al., who reported a moderate compression of period mortality at ages 

below 50 and decompression at older ages. If the bias were eliminated, xS  would show a 

compression of period mortality at all ages. Another limitation of these indicators is that it is not 

possible to compute them for birth cohorts with incomplete life histories. 

Lynch and Brown (2001) developed a new approach to mortality compression by considering the 

slope of the mortality curve at the inflection point, and suggested that mortality has been 

decompressing since the 1960s. Unfortunately, the inflection of the mortality curve (currently 

around age 95) takes place at such an old age that the shape of the curve in its vicinity is not very 

informative about the distribution of most of the deaths; even above the mode (currently around 

age 85), the overwhelming majority of deaths occur before the inflection point of the mortality 

curve. 

Other indicators have also been mentioned in the literature, but have never actually been used for 

studying compression; Wilmoth and Horiuchi (1999) and Cheung et al. (2005) present extended 

lists of such indicators. Notably, the alternative indicators are well correlated with each other 

(e.g., Wilmoth and Horiuchi 1999), which makes it possible to choose any of them as a preferred 
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indicator. However, all of those indicators also share limitations stemming from two important 

aspects of contemporary approaches to studying mortality compression. A desire to overcome 

these limitations motivated us to undertake this study. 

First, researchers have recently been focusing on the compression of old-age deaths, which is not 

affected by declining infant and child, and, in many studies, young adult mortality. However, 

both methods used so far to separate the old-age mortality, censoring at a fixed or the modal age, 

have their limitations. When censoring at a fixed old age, such as 60, the compression indicators 

are severely affected by the built-in tendency to show decompression when the distribution of 

deaths is shifting to older ages (Kannisto 2001; see also Appendix A). Censoring at the modal 

age at death has a disadvantage as well, as this ignores a significant part of the mortality 

experience; besides, the underlying assumptions of this method may be questioned unless strong 

substantive evidence is found that distinguishes natural and premature deaths fitting the Lexis-

Kannisto framework. 

Second, most articles on mortality compression dealt with period life tables and reported a 

compression of the life table distribution of deaths. Although some authors (e.g., Wilmoth and 

Horiuchi 1999, Engelman et al. 2010) did study the compression of mortality from the cohort 

perspective, that line of research was limited because the results for cohorts who have completed 

their mortality history are already outdated. Meanwhile, these might be the most recent 

developments in mortality compression, which are of the greatest interest. As we have indicated 

elsewhere (Ediev 2011; see also the next section), however, compression is a built-in feature of 

the period life table model in the context of declining mortality; it may not indicate an actual 

compression of mortality for birth cohorts. The need to shed light on and overcome this 

limitation of the period life table model is our main motivation for conducting the current study. 
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2. When the period life table model (artificially) compresses the life span 

The period life table model describes the current mortality as a combination of currently 

observed age-specific mortality rates, each of which in fact describes the mortality of a different 

birth cohort. When there is no systematic temporal change in mortality, the period life table 

provides a relevant picture of the mortality pattern for each and every cohort observed. When 

mortality changes over time, however, the period life table induces age-specific compressions or 

decompressions of the mortality schedule.  

Consider the typical case of adult mortality declining with time and increasing with age. In 

Figure 1, the inclined strip bounded by two contour lines of the force of mortality (the 

instantaneous death rate ( )tx,µ , x standing for age and t – for time) represents the area in the 

Lexis diagram where the force of mortality increases from level A to level B. The positive 

inclination of the strip indicates that mortality increases with age, but declines with time: as time 

passes, the same level of mortality is observed at more and more advanced ages. Mortality is 

higher above the strip and lower below it. The synthetic cohort of the conventional period life 

table (represented by the vertical line in the diagram) is ‘exposed’ to the selected range of the 

force of mortality during the period indicated by the age interval x1x2 in the figure. But the birth 

cohorts (represented by the bisector) are exposed to the same range of the force of mortality over 

a longer age interval x1x3. By its very design, a conventional period life table cuts off the part of 

the cohorts’ experience indicated by age interval x2x3, which leads to both an overestimation and 

a compression of mortality in the life table. 
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Another way to note the artificiality of the mortality compression imposed by the period life 

table is to consider the conventional forecast under the ‘constant mortality’ scenario, when the 

forecast scenario applies after some period of mortality decline. As the period combination of 

mortality rates (the period life table) is considered to provide a full account of current mortality, 

the conventional constant mortality scenario assumes time-constant, age-specific mortality rates.  

An illustrative example is given in Figure 2, where the arrows correspond to parts of the lifespan 

of birth cohorts falling in the three periods of time depicted by the three panels: time-invariant 

mortality prior to the observation period, declining mortality in the observation period, and the 

future mortality assumed to remain constant at the most recently observed levels. Levels of the 

force of mortality are denoted by capital letters. Thus, in the past, the force of mortality changed 

from level A to level B in the first age group, from level B to level C in the second age group, 

and so on. Because mortality is decreasing during the current observation period, the youngest 

depicted cohort starts with mortality level A and ends up with mortality level B1, which is lower 

than the mortality level at the beginning of the observation period for the second-youngest cohort 

(B). By a similar logic, every cohort followed in the observation period ends up with a mortality 

level lower than that of the older cohort at the same age at the beginning of the observation. In 

the future, the common constant mortality scenario assumes mortality at the same levels of A1, 

B1, etc., at the same respective ages, as at the end of the observation period. 

In spite of the intuitive soundness of the conventional scenario, a closer evaluation reveals the 

artificial compression of mortality within it. Consider, for example, the second age group in 

Figure 2, where the constant mortality scenario assumes that the force of mortality increases 

from level B1 to level C1. Already in the current year, however, the second-youngest cohort in 

the illustration has moved from a higher mortality level B to the same ultimate mortality level 
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C1, while remaining in the same age group. Hence, contrary to intuition, the vitality of cohorts 

will deteriorate faster in the future than the vitality of cohorts currently observed: although they 

start off with better health conditions (as indicated by the lower force of mortality), cohorts in the 

‘future’ do not end up being healthier than the current population by the end of the age group. 

This paradoxical implication of the time-constant mortality scenario may also be illustrated using 

the life table aging rate (Horiuchi and Coale 1990, Horiuchi and Wilmoth 1997); i.e., the rate of 

proportional increase of the force of mortality at given age: during times of mortality decline, the 

period life table and the constant mortality scenario will show a higher aging rate at any age than 

the cohort observed at that same age in that same period.  

The conventional period life table mistakes the difference between the age when a birth cohort 

experiences a force of mortality B1 and the age when another birth cohort experiences mortality 

level C1 for the duration of time over which a (hypothetical) cohort moves from level B1 to level 

C1. However, a difference between ages indicates the time interval only when taken within one 

birth cohort. Replacing the actual time intervals over which birth cohorts are exposed to different 

mortality conditions by cross-cohort differences in age compresses the age pattern of mortality 

and accelerates aging when mortality declines over time. 

The formal relationships between the period and cohort aging rates and the exposures (in years 

of age) to similar ranges of the death rate are presented in Appendix B (see also Ediev 2008). 

When the contour line of the force of mortality has a tangent slope r, the period life table shows 

the aging rate accelerated by r−1  times and the exposure durations to elementary ranges of the 

force mortality compressed by r−1  times as compared to the cohort schedules. 
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At this point we should comment on the link between the compression of the age pattern of the 

force of mortality, which the paper is primarily about, and the compression of the distribution of 

ages at death commonly considered in the literature. To an extent, the link has been explored in 

the literature. Tuljapurkar and Edwards (2011) have shown analytically, for a variety of mortality 

models, how the variance in age at adult death is related to the steepness of the mortality curve. 

Earlier, Pollard (1991) had shown that the standard deviation of the time to death is 

approximately reciprocal of the steepness of the curve of the death rate in the Gompertz model. 

The steepness of the curve of the death rate is, on the other hand, reciprocal of the exposure 

durations, in years of age, to a given range of the death rate. Hence, Pollard’s and Tuljapurkar’s 

and Edwards’ results suggest that the standard deviation of time to death is in direct relation to 

the exposure durations studied here. At the modal age, a general analytical relation (Eq. (2) 

further down) has been established between the steepness of the mortality curve and the death 

rate, which is, in turn, proportional to the “fastest decline” described by Wilmoth and Horiuchi 

(1999), or the “highest proportion of  deaths” described by Cheung et al., (2005). In Appendix C, 

we add a few other formal relations between the change in the exposure durations to ranges of 

the death rate and the distribution of ages at death. We show that inter-percentile ranges (of 

which Wilmoth and Horiuchi’s (1999) IQR and Kannisto’s (2000) C-family are special cases) 

change, at ages above 40, approximately in the same proportion as the exposure durations. 

 

3. A new methodology for examining compression. Description of the data 

In view of the limitations of the period life table model, our study seeks to contrast the 

compression in cohort and period age schedules of mortality. We recognize that the complete 
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picture of cohort mortality is usually available only after the data become significantly outdated, 

which presents challenges when studying contemporary developments in mortality. We therefore 

do not focus on the distributional characteristics of ages at death, as is usually done in the 

literature on mortality compression. Instead, our main method is based on examining the 

durations of exposure (in years of age) of birth cohorts (also as compared to period mortality 

schedules) to certain ranges of the death rate observed at old age. However, we will also 

consider, when possible in detail, the distributional characteristics of ages at death beyond and 

below the modal age at death, an issue which has attracted special attention in the literature (see 

Section 4). 

To examine the compression of durations of exposure to various mortality levels, we have 

chosen seven ranges of the annual death rate prevailing at old age: death rates 0.01 to 0.011, 0.02 

to 0.021, 0.05 to 0.051, 0.1 to 0.101, 0.15 to 0.151, 0.2 to 0.201, and 0.3 to 0.301. Such death 

rates are currently observed at ages of around 61 to 94 for males and of 68 to 96 for females in 

low-mortality countries, and go beyond the modal ages. While corresponding to different age 

ranges at different periods of time, the range of the death rate 0.01 to 0.301 used to cover 75%-

85% of all female deaths at age 10 and older, and 80%-90% of male deaths at age 10 and older 

(currently about 85% for both sexes). 

Because the duration of exposure, in years of age, to a given range of the death rate ( )xm  might 

be a fraction of the year, while the data are provided in a discrete form, we need a procedure for 

estimating the exact duration of the exposure. To this end, we use a linear approximation of the 

death rate’s logarithm in the vicinity of the age when the range is observed: 

[ ] ( )
b

BA
BAExpos

ln
; = , (1) 
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where [ ]BAExpos ;  is the estimated duration of exposure to the death rate ranging from A  to B ; 

b  is the slope parameter of the regression line ( )( ) bxaxm +=ln  fit in the age interval of at least 

nine years within which the given death rates were observed 2. To reduce volatility due to small 

population size and lower data quality at oldest-old ages, we do not estimate the durations of 

exposure when the interval used to fit the regression extends beyond age 100; we also exclude a 

few cases with R2 below 0.5. 

We use data from the Human Mortality Database (2011), HMD, excluding the countries of the 

former Eastern Bloc, where the bias of the period life tables may have been the opposite of that 

of the rest of the countries represented in the database;3 and also Iceland and Liechtenstein 

because of their small population size. Death rates from period life tables and from (partially 

incomplete) cohort mortality schedules of the HMD form the basis for our work. We study the 

dynamics of durations of exposure to the selected mortality levels over the long time period since 

1900. For different years there are different numbers of countries with mortality data available in 

HMD, but this does not significantly affect our findings. The earliest and the latest years with 

death rates available for each of the countries studied are shown in Table 1; cohort-wise, 

(partially incomplete) sets of age-specific death rates are available starting three years later and 

ending one year earlier than the periods shown in Table 1 (exceptions are Belgium, Denmark, 

                                                           

2 The regression resembles the Gompertz model of adult mortality. But we do not assume, as in the Gompertz 
model, that the slope parameter b is similar at all ages. Its equivalent, the life table aging rate, was shown to vary 
with age (Horiuchi and Coale 1990, Horiuchi and Wilmoth 1997). 

3 These countries showed declining life expectancy before and, in some cases, after the 1990s. In such situations, as 
follows from the results of the previous section, period life tables may be biased towards showing mortality 
decompression (indeed, Tesárková et al. 2010 report decompression of period mortality in Russia). Although the 
empirical part of our paper is focused on the case of increasing life expectancy, mortality (de)compression in the 
context of declining life expectancy may also be an important topic of study.  
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Finland, France, Italy, the Netherlands, Norway, Sweden, and Switzerland; for these countries 

cohort data are available starting from 1900).  

In Table 1, we also present durations of exposure, in years of age, in selected period life tables to 

the death rate’s range 0.01-0.301; this range comprises all seven smaller ranges of the death rate, 

which will be considered in more detail below. As indicated by the table, period mortality 

compression has been observed in all of the countries studied. It has slowed in recent years, but it 

does not seem to have stopped altogether, except in Chile, Finland, Ireland, Taiwan, and the 

U.S., where the durations of exposure in the male life tables have expanded slightly in recent 

periods. Our purpose here is to study the general tendencies in cohort and period mortality 

compression, and not the considerable cross-country variation. Therefore, in the following, we 

study mortality compression averaging durations of exposure and other indicators of 

compression for all of the selected 23 low-mortality countries. 

In Figure 3, we present contour lines of the death rate corresponding to the lower ends of the 

selected ranges of the rate. As mortality was characterized by a declining trend in the past 

century in the low-mortality countries, the ages at which the selected mortality levels were 

observed used to move to older ages with time (this process accelerated in the 1970s). In such a 

situation, our above discussion indicates the bias of the mortality compression picture revealed 

by the period life tables. The ages at which the selected mortality levels are observed have 

shifted by about 0.13 years per year on average in recent decades. The formal theory (Appendix 

B, Ediev 2008) indicates that the period life table will compress the actual exposure durations to 

the selected ranges of the death rate by about 1/(1-0.13)=1.15, or 15%. This would be an average 

contemporary bias of the period life table estimates for the mortality compression indicators. In 

the next section, we will provide a more explicit and comprehensive picture of these differential 
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dynamics by considering cohort- and period-specific durations of exposure to selected mortality 

levels.  

 

4. Empirical evidence on mortality (de)compression 

The development over time of durations of exposure to the selected ranges of the death rate is 

presented in Figure 4 and Table 2. The overall trend after the 1960s was a decompression of 

cohort mortality. For males, at death rates 0.05 or higher—i.e., at around ages 70 and older—

mortality has been decompressing cohort-wise since 1900. For females, a decompression of 

cohort mortality is observed at death rates below 0.05 (currently at ages below 80). At higher 

death rates, the durations of exposure, in years of age, of female cohorts may be characterized as 

moderately compressing or stable. Males are exposed over longer (and still expanding) durations 

of time to the selected mortality levels. However, they experience those levels at younger ages 

than females, which is consistent with male lower life expectancy. 

Period life tables, on the other hand, indicate a continuous mortality compression during the 

whole period after 1900, except for the very recent developments in male mortality at lower 

mortality levels. In the most recent decade, the estimates of the exposures, in years if age, to the 

selected ranges of the death rate were, on average, about 18% shorter when obtained from period 

life tables than the estimates based on cohort data. This discrepancy is well in line with the rough 

estimate above (15%) derived from formal relations. 

Over the last century, the age at which the selected mortality levels were experienced has shifted 

considerably. The death rate experienced by males at age 40 a century ago is now experienced at 

age 60 in low-mortality countries. At age 65, females are exposed to the mortality level they 
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would have been exposed to at age 45 a century ago. Since this process took place at different 

speeds in different populations, it may be informative to examine the exposure durations 

arranged as functions of the age when the respective ranges of the death rate were first 

experienced (Figure 5 and Tables 3 and 4). The exposure durations used to be longer when the 

selected ranges of the death rate were observed to older ages for males, and they were only 

moderately shorter for females. Period life tables would, nonetheless, show a pronounced 

mortality compression. 

 

5. Mortality compression in relation to the mode 

In this section, given our special interest in the literature on compression in relation to the modal 

age at death, we supplement our study with an analysis of the cohort and period distributions of 

ages at death above and below the modal age.  

Although conceptually straightforward, finding the modal age at death may in practice be 

complicated by irregularities of the life table distribution of ages at death and by the need for 

computing the mode in fractions of a year while using a discrete life table. We estimate the mode 

using the formal relation equating the log-derivative of the force of mortality to the force of 

mortality itself at the mode: 

( ) ( ) 0ln =− xxdx
d µµ  at Mx = . (2) 

(The relation was derived, in the context of the Gompertz law, by Pollard, 1991; it was 

rediscovered later as a general relation by Canudas-Romo, 2008, Thatcher et al., 2010, and 

Tuljapurkar and Edwards, 2011). We approximate the derivative in (2) by discrete increments. 
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Empirical estimates of the expression (2) are rather volatile around the mode (especially in cases 

of multiple modes). Hence, we smooth the expression by quadratic parabola applied to the age 

interval 60 to 95 years, and discard data whenever the fit of the parabola is not good enough (R2 

less than 0.5). 

 

a. Mortality compression above the mode 

Following the established practice, we measure the compression above the mode using the 

upward standard deviation from the mode of age at death above the mode: 

( )
( )( )

( )∫

∫
∞

∞

−
=+

M

M

dxxd

dxMxxd

MSD

2

 (years), (3) 

where ( )xd  is the density function of the life table distribution of deaths. In practice, we use 

discrete approximation by using life table numbers of deaths xd  at ages x to x+1 and assuming 

deaths are uniformly distributed within the age groups; we compute the SD(M+) only for cohorts 

with death rates available up to at least age 101. 

The dynamics of the standard deviation from the mode of age at death above the mode are 

presented in Figure 6. For males, the cohorts with data complete enough for obtaining the 

SD(M+) show mortality decompression above the mode since the 1900s. Meanwhile, 

decompression of period mortality above the mode in the 1950s and1960s was more than 

compensated for by continuous compression later on. For females, the cohorts do not show a 
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noticeable trend toward compression or decompression since 1900, while the period life table 

model indicates continuous compression above the mode since 1900.  

 

b. Mortality compression below the mode 

Deaths above the mode constitute only about one-third of deaths above age 30 and may not be 

representative of all adult deaths. That is why we supplement the conventional analysis of the 

compression above the mode by an analysis of the compression below the mode. To eliminate 

effects due to younger-age mortality (presumably, the premature deaths in the Lexis-Kannisto 

approach) and widening the observation window (in the case of left-censoring at a fixed age), we 

consider the distributions of ages at death in an age interval of a fixed width (30 years) below the 

mode: 

( )
( )( )

( )∫

∫

−

−

−
=

M

M

M

M

dxxd

dxMxxd

MSD

30

30

2

30  (years). (4) 

We have set the width (30 years) of the age frame to about three SD(M+) so that it would be 

possible to catch in the frame most of the ‘normal’ deaths below the mode. At the same time, the 

frame is short enough that it does not cover mortality at younger adult ages, as senescence may 

be less important and cohort data may be less available for people in these age groups (with a 

modal age of 75 or higher, the left end of the frame is set at age 45 or older). 

The dynamics of ( )MSD 30  are also presented in Figure 6. As in the cases considered above, the 

mortality compression below the mode is read differently from period and cohort records. The 
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period life tables suggest continuous compression below the mode for both males and females (it 

may have recently leveled off for males). This differs from the experience of birth cohorts: 

mortality below the mode has been decompressing for males and largely stagnating for females 

since the 1970s.  

 

6. Conclusions 

Mortality compression cannot be studied through the dynamics of period life tables, which by 

their very design tend to provide a compressed picture of the human life span when mortality is 

on the decline. The conventional reliance on period data, as well as the limitations of age-

censoring methods, have contributed to contradictory findings in the literature. This reliance 

cannot be changed easily, as almost none of the compression indicators used in the literature can 

be computed for birth cohorts with incomplete data. 

Our method, based on the estimation of the durations of exposure, in years of age, to selected 

ranges of the death rate, shows mortality decompression—not compression—have characterized 

mortality dynamics in 23 low-mortality countries since the 1960s, i.e., in the period during which 

the greatest reductions in old-age mortality have been achieved. 

Even though the selected mortality levels were observed at increasingly old ages, this did not 

result in a significant compression of the durations of exposure to them; for males, the mortality 

curve is decompressing while shifting to an older age.  
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Patterns of decompression or stability, cohort-wise, of the exposure durations may indicate a 

future mortality decline at oldest-old ages that has not been observed so far only because the 

cohorts that will be involved in such a decline are still young.  

Our findings support the view (Ediev 2011) that the durations of exposure, in years of age, of 

cohorts to currently observed mortality levels form a genuine part of current mortality 

conditions, and should be taken into account when formulating future mortality scenarios.  

Although deaths above the modal age at death form only a relatively small fraction of the 

distribution of deaths, they may tell important stories about mortality at ages approaching the end 

of the human lifespan. Compression above the mode is indicative of an important aspect of 

mortality compression which attracted special attention in the literature—the rectangularization 

of the survival curve. However, the cohort data available so far do not support a compression of 

the distribution of ages at death, even above the mode. For males, there was a decompression 

above the mode since 1900. For females, deviation from the mode of the ages at death above the 

mode has been stagnating since 1900. 

Below the mode, mortality was compressing until the 1970s. Since then, cohort-wise, the 

distribution of ages at death below the mode has been decompressing for males and has been 

stable for females. By contrast, the period life table model, due to built-in biases, suggests an 

overall compression of the distribution of ages at death above and below the mode. 

Unlike most of the previous works on mortality compression, we do not come to the conclusion 

that a concentration of mortality in narrow age intervals will occur at some old age in the future. 

Rather, deaths seem to stay dispersed over ages, while shifting towards ever more advanced 

ages. 
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Appendix A. Biasness of compression indicators derived from the distribution of ages at 

death left-censored at a fixed age  

Consider a reference model in which the age distribution of adult deaths ( )txd ,  is shifted 

along the age scale at the speed r  years per year. A good indicator of compression of the 

distribution of ages at death should indicate neither compression nor decompression in the 

reference model. A shift of the distribution of adult deaths is accompanied by a shift of life table 

functions, as long as those functions do not depend on infant and child mortality; in particular, 

this applies to the remaining life expectancy ( )txe ,  and the standard deviation of age at death 

( )txS ,  above age x . The shifting process may be formalized, for ( )txS , , by the relation: 

( )( ) constttxS ≡,  at ( ) ( ) rtxtx += 0  (A1.1) 

or, differentiating by time and rearranging, 

( ) ( )txS
x

rtxS
t

,,
∂
∂−=

∂
∂

. (A1.2) 

It follows immediately that the standard deviation of the age at death above fixed age x  will not 

show (de)compression in the case of shifting mortality only when the standard deviation does not 

depend on age. However, Engleman et al. (2010) showed that the standard deviation ( )txS ,  is a 

decreasing function of age. Combined with (A1.2), this implies that the standard deviation will 

increase when mortality shifts to older age; it will be biased towards showing mortality 

decompression. The time derivative (A1.2) may be used as a quantitative measure of the bias of 

( )txS ,  as a mortality compression indicator. To study the bias analytically, we obtain the 

derivative by age in (A1.2) from the common expression for the variance:  
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Taking derivative of (A1.3), 
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( ) ( ) ( )( )txStxetx ,,, 22 −−= µ . 
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x
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∂
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∂
∂ µ . It follows, then, that 
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( ) ( ) ( ) ( )
( )txS

txStxe
txtxS

x ,2

,,
,,

22 −−=
∂
∂ µ , (A1.4) 

where ( ) ( )
( )∫

= ωµ

x

dytyd

txd
tx

,

,
,  is the force of mortality (the derivation may be requested from the 

author). The time derivative (A1.2), or the bias of the standard deviation as a measure of 

mortality compression, then equals 

( ) ( ) ( ) ( )
( )txS

txStxe
txrtxS

t ,2

,,
,,

22 −=
∂
∂ µ . (A1.5) 

 

Our general analytical results are as follows:  

The change of the standard deviation ( )txS ,  of age at death, left-censored at fixed age x in the 

shift scenario, is a function of the difference between the remaining life expectancy at age x and 

the standard deviation itself: when the difference is positive, the standard deviation will increase 

(indicating mortality decompression); when the difference is negative, the standard deviation 

will decline (indicating mortality compression); only if the hazard rate at the censoring age 

equals zero will the standard deviation not change over time irrespective of the difference. 

In the exponential distribution of time to death, where the hazard rate is age-independent, 

the remaining life expectancy and the standard deviation are equal. In such a case, ( )txS ,  would 

not change over time, and would show neither a compression nor a decompression of the 

distribution of deaths in the shifting model; it would behave as a ‘good’ indicator of mortality 

compression. The exponential distribution is, however, a very special one. It has the maximum 

entropy of the distribution of ages at death (Kagan et. al 1973, Demetrius 1978, 1979); i.e., it is, 
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in a sense, the least compressed of all the distributions. For realistic, more concentrated 

distributions, ( )txS ,  will usually indicate ‘decompression’ in the shifting scenario. 

To make the relations above more practical, we should approximate the shift parameter 

r . Assuming the shift model holds true, one option is to apply it to the remaining life expectancy 

at age x : ( ) ( ) 0,, ≡
∂
∂+

∂
∂

txe
t

txe
x

r . That would produce 
( )
( )txe

txe
r

x

t

,

,

∂
∂
∂
∂

−=  and, combined with 

(A1.2), provide the approximation to the bias: 
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txe
txS

t x
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,
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∂
∂

∂
∂
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∂

. (A1.6) 

The standard deviation’s change rate can then be adjusted for the bias:  
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∂
∂

∂
∂
∂
∂

. (A1.7) 

If the assumption about the mortality shift holds true, the adjusted derivative (A1.7) equals zero. 

If the shift is, however, combined with the additional transformation of the mortality curve, the 

approximated shift parameter r may be distorted and the adjusted change (A1.7) may remain 

biased. Another limitation of the adjustment is the inability to obtain an unbiased indicator 

( )txS ,*
 by integrating (A1.7) over long time intervals: adjusted derivatives at different moments 

in time might be interpreted as being derivatives of different incomparable measures of variance 

(each of them corresponding to different censoring ages). Nonetheless, the approximation above 

may still be useful in showing the bias of the mortality compression indicator ( )txS ,  under the 

‘null hypothesis’ of mortality shift. 

In Figure A1, we present empirical estimates of the bias (A1.7) using period female life 

tables for low-mortality countries from the HMD. The bias is towards decompression at any 

given left-censoring age x. (The bias would be even higher for males.) Unlike the studies that 
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used such biased mortality compression indicators, the adjusted indicator shows mortality 

compression above any age, except for the oldest-old ages. In particular, the compression of 

period mortality is strong at ages above 50, where Meyers and Manton and Engelman et al. 

report decompression. 
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Appendix B. Relation between period and cohort aging rates and exposures (in years of 

age) to similar ranges of the death rate 

Let ( )tx,µ  be the force of mortality as a function of age x and time t and 

( ) ( )xcxcxC += ,, µµ  be the force of mortality as a function of age x and cohort c. The life table 

aging rate (Horiuchi and Coale 1990, Horiuchi and Wilmoth 1997) calculated from the mortality 

schedule of the cohort aged x at time t is (we use the conventional notations for full and partial 

derivatives; the full derivative over x is the sum of both partial derivatives multiplied by the 

derivatives over x of the expressions replacing each of the variables): 

( ) ( ) ( ) ( ) =−+−=−=− ∂
∂

∂
∂ xtxxtxxtxxtxk CtCdx

d
Cx

def

C ,ln,ln,ln, µµµ  

( ) ( ) ( ) ( )
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
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


+=+=

∂
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∂

∂
∂

∂
∂

tx

tx
txktxtx

x

t
tx ,

,
1,,ln,ln

µ
µµµ , (A2.1) 

where ( ) ( )txtxk x ,ln, µ∂
∂=  is the aging rate of the period life table at time t. When mortality is 

increasing by age ( ( ) 0, >∂
∂ txx µ ) and declining by time ( ( ) 0, <∂

∂ txt µ ), the expression in 

parenthesis in (A2.1) is less than one; i.e., the cohort aging rate is lower than the period life table 

aging rate. The expression in the parenthesis may be linked to the slope of the contour line 

( )tyx =  of the force of mortality, where:  

( )( ) consttty ≡,µ . (A2.2) 

Differentiating by t,  

( ) ( )( ) ( )( ) 0,, =+ ∂
∂

∂
∂ ttyttyty txdt

d µµ . (A2.3) 

Hence, the tangent slope of the contour line ( )tyr dt
d=  equals 
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( )( )
( )( )tty

tty
r

x

t

,

,

µ
µ

∂
∂
∂
∂

−= . (A2.4) 

Substituting this into (A2.1),  

( ) ( ) ( )[ ]txrtxkxtxkC ,1,, −=− , (A2.5) 

where ( )txr ,  is the tangent slope of the contour line passing at age x at time t.  

Relation (A2.5) is also informative about period-cohort differences in exposure durations 

(in years of age) to similar elementary ranges of the force of mortality. The exposure duration is 

reciprocal to the age derivative of the force of mortality; i.e., also to the aging rate. Hence: 

( )( ) ( )( )
( )txr

ttx
xttxC ,1

,,
,,

−
=− µεµε , (A2.6) 

where ( )⋅ε  is the exposure, in years of age, to an elementary unit range of the force of mortality 

around the value ( )tx,µ  observed at age x at time t; the subscript ”C” is applied to the cohort 

indicator 
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Appendix C. Compression of the age pattern of the mortality curve and the distribution of 

ages at death  

Let ( )uε  and ( )u0ε  be exposures, in years of age, to the elementary unit range of the 

force of mortality around the value u  in two mortality curves ( )xµ  and ( )x0µ , which we label as 

the ‘transformed’ and the ‘reference’ curves, respectively. (The curves may represent, for 

example, period and cohort schedules or schedules at two periods of time/birth cohorts.) Our 

purpose in this note is to explore how differences in the exposures lead to differences in the 

distributions of ages at death between the reference and transformed schedules.  

We study the scenario of uniform compression/decompression, when the exposures in the 

transformed schedule are related to the reference exposures by a constant decompression 

coefficient: 

( ) ( )uu 0αεε = . (A3.1) 

If 1>α , the transformed mortality curve is decompressed; it is compressed when 1<α ; the 

curves are similar when 1=α .  

Without a loss of the generality of the results for the compression of adult mortality, we 

also introduce a simplifying assumption that the mortality curves span over ages zero to infinity 

increase monotonically with age, and start at ( ) ( ) 00 00 u== µµ . This may be interpreted as a 

shift of the origin of the age axis to the adult age at which the death rate reaches the level 0u ; it 

follows, then, that our results will be concerned with mortality compression above the mentioned 

adult age. Alternatively, one may think of ( )xµ  and ( )x0µ  as being free of infant and child 

mortality components, so that ( ) ( ) 0000 == µµ . 
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Given the simplifying assumption above, the ages at which the force of mortality reaches 

a given level u may be obtained as 

( ) ( )∫=
u

dwwuX
0

00 ε ,  

( ) ( ) ( ) ( )uXdwwdwwuX
uu

0

0

0

0

ααεε === ∫∫ , (A3.2) 

Hence, the decompression coefficient, in line with intuition, determines the stretch (compression 

when 1<α ) of the age scale of the transformed mortality curve as compared to the reference 

curve. It follows immediately that 
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Now we can derive the relation between the reference and transformed survival functions: 
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This relation reveals two effects of the decompression of the exposure durations on proportions 

surviving to a given age. First, as indicated by the argument on the right-hand side, the 

stretch/compression of the age scale of the mortality curve has a similar effect on the age scale of 

the survival function. Second, however, the power on the right-hand side indicates that the 

stretching/compression effect is counterbalanced by a reduction/increase in survival due to 

longer/shorter exposure durations at all levels of the death rate. To assess the combined effect of 

these two processes on the distribution of ages at death, let us consider the ages ( )λY , ( )λ0Y  at 

which the survival functions reach a given level λ  (these would be ( )λ−1100 th percentiles of 

the distributions of ages at death). Using (A3.4), 
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Rearranging the expression, 
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Expanding by the Taylor series, with respect to α  at 1=α , the first-order approximation of the 

transformed percentiles may be derived as 
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( )λ0Y  is function inverse to ( )xl0 , i.e., 
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In the Gompertz model, ( ) ( )kxux exp00 =µ , assuming that ( )( )λµ 00 Y  is much higher than 0u , the 

last integral, 

( )
( )( )

( ) ( )( )( ) ( )( )
kk

Y

u

k

Yk
dx

Y

x
Y

1
1

exp1 00

0

0

0 00

0
0

≈
−

=−−=∫
λµλ

λµ
µλ
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is approximately constant. Although not perfect, the Gompertz model describes well the overall 

development of the death rate at ages 30-90 (e.g., Wetterstrand 1981). In our HMD data, the 
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expression (A3.9) deviated by less than 25% from the Gompertz estimate at all ages ( )λ0Y  above 

40, for both females and males. Therefore, the multiplier in the second summand in (A3.8) may 

be taken as approximately constant G at adult ages (empirically, 10≈G ): 

 ( ) ( ) ( ) GYY ⋅−−≈ 10 αλαλ . (A3.10) 

Hence, the stretch of the age scale of the survival function will, in the first-order approximation, 

be partly compensated for at ages of about 40 and older by an age-independent shift in the 

opposite direction (the compensation will be smaller at younger ages). The age-independent shift 

will, however, have no consequences on indicators of the compression of the distribution of ages 

at death, such as IQR or Sx. Hence, the compression/decompression of the exposure durations, in 

years of age, to ranges of the death rate will, in the first-order approximation, produce a similar 

compression/decompression of the distribution of adult ages at death. 
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Table 1. Data availability and durations of exposure, in years of age, of period life tables to the 

range 0.01-0.301 of the death rate at selected periods of time 

Population 

First year 

of data 

(T1) 

Latest year 

of data 

(T2) 

Exposure 

in T1 

 

Exposure 

in 1990 

 

Exposure 

in 2000 

Exposure 

in T2 

 Females 

Australia 1921 2007 44.9 31.6 28.4 27.1 

Austria 1947 2008 32.7 28.2 26.5 25.3 

Belgium 1900 2009 38.8 29.1 27.2 26.9 

Canada 1921 2007 42.2 32.3 30.5 30.2 

Chile 1992 2005 34.5 34.5 33.5 32.9 

Denmark 1900 2008 38.1 35.1 34.6 31.1 

Finland 1900 2009 39.5 29.2 26.3 25.6 

France 1900 2007 42.7 27.2 26.6 25.9 

Ireland 1950 2009 37.8 32.2 30.0 29.4 

Israel 1983 2008 34.3 34.5 31.6 30.3 

Italy 1900 2007 38.0 28.5 27.4 26.0 

Japan 1947 2009 38.8 26.7 27.5 26.5 

Netherlands 1900 2008 38.8 28.9 28.4 27.2 

New Zealand 1948 2008 37.6 33.7 31.0 28.6 

Norway 1900 2009 42.3 30.6 27.6 26.8 

Portugal 1940 2009 36.5 29.1 27.9 24.9 

Spain 1908 2006 48.0 27.3 26.3 25.7 
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Population 

First year 

of data 

(T1) 

Latest year 

of data 

(T2) 

Exposure 

in T1 

 

Exposure 

in 1990 

 

Exposure 

in 2000 

Exposure 

in T2 

Sweden 1900 2008 37.5 28.4 27.5 26.5 

Switzerland 1900 2007 39.4 27.1 25.8 25.5 

Taiwan 1970 2009 36.4 33.3 32.3 31.3 

The United States 1933 2007 45.2 35.4 33.5 33.2 

United Kingdom 1922 2009 38.5 33.9 31.3 29.9 

West Germany 1956 2008 30.5 28.8 27.9 25.4 

Average for 

females    
30.7 29.0 27.6 

 Males 

Australia 1921 2007 46.6 36.3 32.1 31.3 

Austria 1947 2008 38.6 36.2 34.6 33.1 

Belgium 1900 2009 45.6 35.3 33.6 33.3 

Canada 1921 2007 42.1 37.0 34.2 33.6 

Chile 1992 2005 39.8 39.8 39.5 40.0 

Denmark 1900 2008 42.2 37.8 35.3 33.5 

Finland 1900 2009 44.7 37.6 34.0 34.7 

France 1900 2007 50.1 37.7 35.1 34.3 

Ireland 1950 2009 38.2 35.4 33.0 33.1 

Israel 1983 2008 39.4 39.0 35.9 35.1 

Italy 1900 2007 48.4 36.2 33.4 31.5 
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Population 

First year 

of data 

(T1) 

Latest year 

of data 

(T2) 

Exposure 

in T1 

 

Exposure 

in 1990 

 

Exposure 

in 2000 

Exposure 

in T2 

Japan 1947 2009 42.3 33.3 33.8 33.1 

Netherlands 1900 2008 42.0 35.3 32.7 30.4 

New Zealand 1948 2008 38.9 37.1 33.8 32.0 

Norway 1900 2009 44.5 36.5 31.5 30.2 

Portugal 1940 2009 42.1 35.9 34.2 32.4 

Spain 1908 2006 46.6 35.3 34.5 34.0 

Sweden 1900 2008 43.6 33.7 31.1 30.1 

Switzerland 1900 2007 48.3 33.7 32.2 31.5 

Taiwan 1970 2009 41.0 37.6 38.0 40.3 

The United States  1933 2007 48.4 39.7 36.6 36.9 

United Kingdom 1922 2009 40.0 36.4 34.3 33.8 

West Germany 1956 2008 36.6 35.5 34.3 33.3 

Average for 

males    
36.4 34.2 33.4 
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Table 2. Durations of exposure, in years of age, of birth cohorts (left panel) and period life tables 

(right panel) to selected ranges of the death rate; the durations of exposure are averaged over 

23 currently low-mortality countries and selected periods of time. 

Birth cohorts’  actual exposure 

to the selected ranges of the 

death rate in periods: 

Exposure estimates from  

period life tables 
 Range of 

the death 

rate 

1900-

1909 

1960-

1969 

1997-

2006 

1900-

1909 

1960-

1969 

1997-

2006 

 Males 

0.01-0.011 2.25 0.99 1.41 1.90 0.95 1.05 

0.02-0.021 0.74 0.52 0.74 0.71 0.50 0.49 

0.05-0.051 0.24 0.22 0.26 0.23 0.23 0.19 

0.10-0.101 0.11 0.12 0.12 0.11 0.11 0.10 

0.15-0.151 0.073 0.078 0.081 0.072 0.073 0.066 

0.20-0.201 0.056 0.060 0.062 0.055 0.057 0.051 

0.30-0.301 0.043 0.047 0.044 0.041 0.044 0.038 

 Females 

0.01-0.011 2.18 1.11 1.24 1.83 0.98 0.94 

0.02-0.021 0.62 0.52 0.55 0.56 0.46 0.43 

0.05-0.051 0.21 0.19 0.19 0.20 0.17 0.16 

0.10-0.101 0.11 0.10 0.09 0.10 0.09 0.08 

0.15-0.151 0.074 0.073 0.065 0.074 0.066 0.057 

0.20-0.201 0.059 0.061 0.052 0.059 0.056 0.046 

0.30-0.301 0.045 0.045 0.039 0.045 0.041 0.036 
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Table 3. Durations of exposure, in years of age, of male birth cohorts and period life tables to 

selected ranges of the death rate; the durations of exposure are averaged over 23 currently low-

mortality countries and selected ranges of age when the range of the death rate was first 

experienced (the data cover the entire period since 1900). 

 Range of 
the death 

rate 

Age: 

40-45 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90 90-95 95-100 

 Males, cohorts 

0.01-0.011 1.84 1.54 1.17 1.24 1.33        

0.02-0.021  0.62 a 0.75 0.62 0.61 0.70       

0.05-0.051     0.26 0.24 0.24 0.25     

0.10-0.101       0.11 0.12 0.12    

0.15-0.151       0.061 a 0.077 0.080 0.081   

0.20-0.201       0.050 a 0.051 a 0.058 0.063 0.070  

0.30-0.301          0.043 0.047 0.053 

 Males, period life tables 

0.01-0.011 1.82 1.42 1.05 1.01 0.97        

0.02-0.021  2.12 a 0.73 0.58 0.53 0.50 0.49      

0.05-0.051    0.61 a 0.26 0.23 0.21 0.19     

0.10-0.101       0.11 0.11 0.10 0.10 a   

0.15-0.151        0.075 0.074 0.069   

0.20-0.201        0.067 a 0.056 0.057 0.055  

0.30-0.301         0.040 a 0.042 0.043 0.049 

a Values might be affected by a small number of cases (three or fewer country cases) 
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Table 4. Durations of exposure, in years of age, of female birth cohorts and period life tables to 

selected ranges of the death rate; the durations of exposure are averaged over 23 currently low-

mortality countries and selected ranges of age when the range of the death rate was first 

experienced (the data cover the entire period since 1900). 

 Range of 
the death 

rate 

Age: 

40-45 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90 90-95 95-100 

 Females, cohorts 

0.01-0.011 3.62 a 1.87 1.67 1.29 1.20 1.21 1.18 a      

0.02-0.021    0.63 0.60 0.55 0.53 0.51     

0.05-0.051      0.21 0.20 0.20 0.18    

0.10-0.101       0.11 0.11 0.11 0.094   

0.15-0.151        0.081 0.073 0.071 0.068  

0.20-0.201         0.058 0.061 0.054 0.056 a 

0.30-0.301          0.043 0.044 0.045 

 Females, period life tables 

0.01-0.011 2.83 1.75 1.45 1.06 0.98 0.93 0.86      

0.02-0.021   0.53 a 0.56 0.52 0.46 0.42 0.39     

0.05-0.051     0.19 a 0.20 0.18 0.17 0.15    

0.10-0.101       0.10 0.10 0.091 0.082   

0.15-0.151        0.076 0.069 0.062 0.058  

0.20-0.201         0.057 0.056 0.049 0.046 

0.30-0.301          0.042 0.041 0.040 

a Values might be affected by small number of cases (three or fewer country cases) 



 45 

 

Birth cohort

Synthetic 
cohort

x1

A
ge

Time

x2

x3

 

Figure 1. Illustration of different exposures (in years of age) of the birth cohort and of the synthetic 

cohort of the period life table to a given range of the force of mortality (the instantaneous death rate) 

when mortality is declining with time but increasing with age. The two inclined dashed lines are contour 

lines of the force of mortality and bound the area where the force of mortality increases from level ‘A’ to 

level ‘B’.  
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Figure 2. Illustration of the mortality compression implicitly assumed in the 

conventional ‘constant mortality’ scenario 

Note: The arrows depict parts of the lifespan of birth cohorts in the Lexis 

diagram (age goes along the vertical axis). The capital letters denote different 

levels of mortality. The panel to the left depicts the stagnant mortality prior to 

the observation period; the panel in the middle depicts the declining mortality 

during the observation period; and the third panel depicts the conventional 

‘constant mortality’ scenario of the future. 
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Figure 3. Ages at which the selected death rates were observed in different periods (the ages are 

averaged over 23 countries) 
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Figure 4. Dynamics over time of durations of exposure, in years of age, of birth cohorts (dots) 

and period life tables (circles) to selected mortality levels (the exposures are averaged over 

23 countries) 
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Figure 5. Durations of exposure, in years of age, of birth cohorts (dots) and period life tables 

(circles) to selected ranges of the death rate as functions of the youngest age at which the 

death rates were observed (the exposures are averaged over 23 countries)  
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Figure 6. Cohort and period root mean square deviations form the modal age at death of ages at 

death above the mode (SD(M+)) and within a 30-year-long age interval below the mode 

(SD(30M)), averaged over 23 countries as a function of the period when the mode was observed. 
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Figure A1. The average annual change in the standard deviation ( )txS ,  of ages at death above 

age x, the average annual bias of the change of ( )txS ,  as an indicator of mortality compression, 

and the average annual change adjusted for the bias in female period life tables in 1995-2000 (for 

each year, mortality rates are averaged over 23 female populations) 


